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Highlights
Cell types are the basic functional units
of multicellular organisms. So far, cell
taxonomies remain Linnaean.

Single-cell transcriptomic methods en-
able the systematic characterization of
cell diversity in understudied animal line-
ages. These data-driven cell catalogs
should allow us to organize cell diversity
into evolutionary classification schemes.

Single-cell sampling bias and other tech-
nical limitations can severely constrain
our ability to integrate cell atlases across
species. It is important to advance to-
wards general sampling strategies and
data standards.
A fundamental characteristic of animal multicellularity is the spatial coexis-
tence of functionally specialized cell types that are all encoded by a single
genome sequence. Cell type transcriptional programs are deployed and
maintained by regulatory mechanisms that control the asymmetric, differen-
tial access to genomic information in each cell. This genome regulation ulti-
mately results in specific cellular phenotypes. However, the emergence,
diversity, and evolutionary dynamics of animal cell types remain almost
completely unexplored beyond a few species. Single-cell genomics is emerg-
ing as a powerful tool to build comprehensive catalogs of cell types and their
associated gene regulatory programs in non-traditional model species. We
review the current state of sampling efforts across the animal tree of life
and challenges ahead for the comparative study of cell type programs. We
also discuss how the phylogenetic integration of cell atlases can lead to the
development of models of cell type evolution and a phylogenetic taxonomy
of cells.
Comparative analysis of cell type atlases
uncovers transcriptional similarities
across species, but are confounded by
pleiotropy and non-independence of
gene expression patterns, particularly at
large phylogenetic distances.

The interrogation of cell type regulatory
programs in closely related species
should enable the development of quan-
titative models of cell type evolution and
to assess the (potentially incongruent)
evolutionary histories of the different
components of these programs.
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Specialized cells represent the fundamental level of organization in multicellular organisms
[1]. The morphological and molecular regularities observed in cells have inspired analogies
to the diversity of organisms and their hierarchical arrangement into different taxa. This anal-
ogy suggested that cellular taxonomy could be developed following similar principles to
those underlying Linnaean species classification, with the existence of predefined, staggered
ranks (but ignoring evolutionary relationships; Box 1). Indeed, we can characterize a cell type
as a discrete entity that has unique morphological and functional properties (Box 2). We can
also require a cell type to be reproducible – that is, to emerge stably across generations
through embryonic development. Nevertheless, the hierarchical nature of cell types and
the discrete nature of their classification remain more elusive: ontogeny and cell lineages
within organisms are the major cell type-organizing forces, but these are remodeled contin-
uously by the plasticity and pleiotropy (see Glossary) of gene regulatory programs across
tissues. Because cell types are natural building blocks bridging molecular (gene level) and or-
ganismal (phenotypic) evolution, there is great interest in studying cell types as evolutionary
units [2]. To this end, molecular profiling tools, particularly single-cell transcriptomics, hold
the promise to bring cell type molecular phenotyping and classification to non-model species
by building systematic atlases of cells in different animal lineages. Single-cell atlases not only
can advance our understanding of the molecular and cellular biology of understudied animal
groups but are also the necessary first step towards a comparative biology of cell type pro-
grams. Only through these cell type comparisons can we eventually understand and recon-
struct cell type evolution.

In this review we examine recent advances in single-cell atlas building in non-traditional model
species, and then discuss the challenges and opportunities ahead in the phylogenetic expansion
of cell type mapping across the animal tree of life.
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Box 1. Linnaean Cell Type Classification

Linnaeus formalized a taxonomic classification system aimed at grouping, organizing, and naming organisms. Central to
the Linnaeus system is the existence of predefined, staggered taxon ranks (kingdom, phylum, class, order, family, genus,
species) from which a binomial (genus–species) nomenclature system is derived. Although this binomial naming is still
widely used in taxonomy, modern systematics uses phylogenetic methods (very often molecular phylogenetics) to derive
classifications that are explicitly based on evolutionary relationships. In addition, this phylogenetic systematics (also known
as cladistics) often does not necessarily adhere to rigid, staggered ranks as universal principles, and instead focuses on
the tree-like organization of species.

By analogy, cell type taxonomies remain Linnaean in the sense that they do not incorporate evolutionary considerations –
whether or not implying the existence of staggered ranks, for example broad cell type identities [17]. In fact, cell type clas-
sifications very often include hierarchical tree representations based on, for example, transcriptome similarities. However,
these trees do not (necessarily) represent any historical relationships (either ontogenetic or phylogenetic), in the same way
as Linnaean ranks often do not conform to our current understanding of species phylogeny. A cladistic/phylogenetic cell
type classification would incorporate information about the evolutionary relationships between cell types. However, to de-
velop such cell type cladistics we will need cell type phylogenetic methods – ways to trace the evolutionary relationships
and histories of cell types across species and phyla.
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Glossary
Ambient RNA: RNA molecules
released from bursting or leaky
damaged cells. These RNAs
can be biased for a specific cell
type (e.g., epidermal cells are
particularly sensitive) and will be
captured during single-cell library
preparation, representing a constant
background in each single-cell
transcriptome. Ambient RNA not
only complicates single-cell RNA
sequencing (scRNA-seq) analysis
but is suspected to be a major
source of batch effects across
experiments.
Character state: in taxonomy and
phylogenetics, a specific, form,
category, or quantitative value in which a
character (a heritable trait) is present in
an organism. The uniform encoding of
character states is important in
comparative biology. In the case of cell
type program comparisons, character
states can be gene expression levels
(either quantitative or binarized),
sequence motif enrichments, regulatory
element usage, etc.
Evolutionary rate: a parameter to
describe the dynamics of change of a
particular character, generally or in a
specific lineage. For example, changes
in DNA or protein sequence or
divergence in gene expression levels
[107].
Gene module: a set of genes that are
coexpressed in a coordinated fashion in
one or more cell types. A gene program
could typically be associated with a
specific biological function, whichmay or
may not be reused in different cellular
contexts. A program is regulated by one
or more transcription factors (TFs).
Metacell: a group of single-cell
genomic measurements that can be
modeled mathematically as resampling
of the same idealized cell. The combined
statistics of a metacell can quantitatively
Cell Taxonomy
Cell type classification schemes vary in their granularity and in the degree of phylogenetic and an-
atomical generalization. That is, classifications may encompass only particular organs/species or
represent phylogenetically and anatomically (even organism-level) wider frameworks [3]. Most
proposed cell type classifications are hierarchical and, with few exceptions [4], use concepts
and jargon borrowed from taxonomy (clades, lineages, trees, etc.), although they do not explicitly
consider or try to convey evolutionary relationships between cell types [5].

From a historical perspective, the first efforts in cell type classification were based on the morphol-
ogy, spatial tissue arrangement, cellular connectivity, and histological staining properties of cells.
Using this information, multiple attempts were made in the pre-genomics era to develop global
cell classification schemes [3], to systematically characterize cell types in specific taxa [6–8], and
to use cell type number as a proxy for organismal complexity [9]. These classification frameworks
were restricted in resolution and could not take into account functional or developmental consider-
ations that are not readily represented morphologically. The advent of molecular profiling tools has
extended the ability to characterize, identify, and classify cell types. Common strategies include de-
tecting specific proteins, using antibody-based immunostaining (surface markers are still widely
used for themolecular phenotyping of hematopoietic and immune cells [10]), or specific transcripts
using RNA in situ hybridization (more rarely also by qPCR analysis [11]). While immunostaining is
strongly constrained by the limited availability of antibodies, in situ hybridization with custom-syn-
thesized probes has enabled the rapid extension of molecular profiling to a wide diversity of organ-
isms, thus becoming a cornerstone of modern evo-devo studies [12–14]. A major limitation of
these expression profiling tools is the limited scalability to dozens ofmarkers and,most importantly,
Box 2. Broad-Sense and Narrow-Sense Cell Types

A cell type in the narrow sense is a subset of the cells within an organism that share (i) morphological properties, (ii) spatial
tissue distribution or motility characteristics, (iii) signaling andmetabolic input and output, and, in the case of progenitor cell
types,(iv) differentiation and proliferation potential. The degree of homogeneity for each of these categories may vary and is
currently defined ad hoc. Moreover, cell types may or may not be ontogenically coherent because they often emerge from
different precursor developmental lineages. A cell type in the broad sense is a distribution of intracellular molecular
properties such as transcriptional levels, protein abundance, or epigenomic landscapes. The distributions of cell type
molecular properties are expected to be stable over timescales that exceed a cell cycle, and do not include the effect of
transient fluctuations (e.g., circadian rhythm, physiological cycles, stress responses). Such broad-sense cell types can
be defined based on unimodal or multimodal molecular atlases and, in many cases, they can be expected to approximate
and refine narrow-sense cell types.
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define the molecular state of a cell by
neutralizing single-cell sparse-sampling
noise and stochastic, unregulated
variation in cellular molecular
composition.
Orthologs/paralogs: a pair of genes in
two species are orthologs if they
originated through speciation, and were
therefore present as a single gene in the
common ancestor of the two species.
By contrast, paralogs are genes
originating from a duplication event.
When referring to paralogs within a
species the term 'in-paralogs' is often
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used, whereas paralogs in different
species are called 'out-paralogs'. A gene
that is orthologous to a group of
paralogs in another species is often call a
'co-ortholog'. In addition, paralogs
specifically originating through genome
duplication are called 'ohnologs',
whereas those resulting from
hybridization events are termed
'homoeologs'. Further details on gene
homology definitions are given in
[109,110].
Pleiotropy: a single gene influencing
multiple phenotypic traits. In the context
of cell type programs, pleiotropic genes
(and gene modules) are expressed in
different cell types, and there are similarly
pleiotropic cis-regulatory sequences.
Unique molecule identifiers (UMIs):
short random sequences that are
incorporated into transcripts during
reverse transcription to accurately
measure transcript molecular counts in
scRNA-seq analysis. UMIs are aimed at
mitigating the effect of library
amplification bias in scRNA-seq
protocols.
the need to define a priori the set of gene markers to study. This selection of marker genes is
phylogenetically biased by previous studies on model species, and therefore ignores clade-
specificmechanisms.Molecular profiling strategies have been very effectivewhen used in the com-
parative study of embryogenesis and tissue/organ-level anatomical structures [15,16]. However,
mapping the diversity of cell types across species in a truly systematic fashion was so far not
possible.

An extension of the candidate marker gene profiling is the analysis of genome-wide gene expres-
sion using bulk transcriptomics. Pioneering studies in cell type bulk transcriptomics has provided
systematic cell classification schemes [17], revealed the hierarchical structure of cell type
transcriptomes [18], and enabled the first attempts at building phylogenies of closely related
cell types based on their gene expression profiles [19]. However, these enrichment strategies
are necessarily limited to cell lines [17,20–22] – that are virtually non-existent in the vast majority
of organisms – or homogeneous cell populations isolated manually or by fluorescence-activated
cell sorting (FACS) [10,23,24] –which require dedicated methods and do not ensure purity. High-
throughput single-cell RNA sequencing methods (scRNA-seq) overcome many of these
limitations, ultimately facilitating the minimally biased sampling and molecular characterization of
thousands of single cells, and setting the stage for in silico reconstruction of cell type repertoires
in species that were so far difficult to study.

Overall, the development of cell type classification tools is in a way analogous to that of species
phylogenetic methods: from morphological to molecular characters (nucleotide or protein
sequences). In the same way that it is difficult to resolve species phylogenies usingmorphological
characters alone, only withmolecular data canwe aim at developing phylogenetically inclusive cell
type classification schemes. However, the analogy ends here: modern taxonomy is explicitly
based on the underlying evolutionary history of a species, very often incorporating molecular
phylogenetics as a key tool for classification. Cell type taxonomies remain, to date, fundamentally
Linnaean.

Animal Cell Type Mapping – Phylogenetic State of the Art
Since the first proof-of-concept scRNA-seq studies in the early 2010s ([25–27]; reviewed in [28]),
we have witnessed the rapid proliferation of scRNA-seq analyses, with ever-growing numbers of
cells and moving from descriptive cell type phenomenologies to perturbation assays, develop-
ment and temporal differentiation dynamics, and spatial transcriptomics with single-cell resolution
[29]. Today, cataloging the full repertoire of cell type programs in human tissues and development
seems to be within reach [30,31], and important progress has already been made in cataloguing
mouse cell types [32,33]. Applied to non-traditional model species, whole-organism scRNA-seq
methods should pave the way to the systematic characterization and comparison of cell types
across the animal and, consequently, can rapidly advance our understanding of cell type diver-
sity, development, and evolution [34]. In addition, studying the spatial arrangement of these cell
types with the emerging spatial transcriptomic technologies [29] can help to refine these cell
atlas models.

Given a minimally biased single-cell sampling strategy (next section), we can use standardized
pipelines to generate gene expression profiles for thousands of cells and to group such profiles
into discrete, highly similar, transcriptional cell states. These data-driven cell groups/clusters con-
stitute basic units that can be further developed, through biological interpretation, into cell type
classification schemes. Following up on the phylogenetics analogy, scRNA-seq methodologies
can have an impact on the study of cell type diversity and evolution analogous to the impact of
whole-genome/transcriptome sequencing techniques on the resolution of the animal tree of life.
Trends in Genetics, Month 2021, Vol. xx, No. xx 3
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From a taxonomic perspective (Figure 1), whole-organism cell type atlases are currently available
for seven major animal lineages (in most cases represented by a single species), including a
ctenophore [35], two sponges [35,36], a placozoan [35], five cnidarians [37–40,113], an acoel
[41], craniates (considering mouse whole-organ single-cell transcriptomes [32,42]), and platyhel-
minths [43–45]. Tissue-specific single-cell atlases are already available for model species, includ-
ing multipleDrosophila melanogaster (Arthropoda) datasets [46–51] andCaenorhabiditis elegans
TrendsTrends inin GeneticsGenetics

Figure 1. Single-Cell Genomics across Metazoa. (Left) The availability of genome sequences and/or bulk transcriptomes across major animal lineages, as well as
embryonic, larval, and whole-adult single-cell atlases. Light-grey dots indicate ongoing genome projects; concentric circles indicate sampling of specific organs/tissues.
(Right) Examples of seven whole-adult/larva cell type atlases in non-traditional model species are shown, including a 2D projection of metacells and the expression of
highly variable genes across metacells. Asterisks indicate the species shown; colors are arbitrary and highlight similar metacells. Data from [35,38,44,53,56]; animal
silhouettes from phylopic.org. Abbreviation: scRNA-seq, single-cell RNA sequencing.
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(Nematoda) neuronal single-cell analyses. In addition, embryonic and larval stages have been
sampled in two sea urchin species (Echinodermata) [52–54], in the marine polychaete Platynereis
dumerilii (Annelida) [55], in the tunicates Ciona intestinalis [56] and Phallusia mammillata
(Urochordata) [57], and again both in D. melanogaster and C. elegans [58,59]. The vertebrates
are the most densely sampled lineage, including developmental single-cell atlases in four species
(human, mouse, zebrafish, and Xenopus) [31,42,60–63] and brain single-cell data (in most cases
for specific brain regions) for several mammals, reptiles, and teleosts [64–66].

It is interesting to compare the phylogenetic expansion of single-cell atlases to that of reference
genomes over the past 5 years. In 2015, 15–17 years after the publication of the first animal
draft genomes, Dunn and Ryan [67] reviewed the status of genome sequencing across animal lin-
eages. By then, 212 genomes from 14 animal phyla were available at the US National Center for
Biotechnology Information (NCBI). Today, 11 404 genomes from 27 animal phyla (Figure 1) are
available or in progress, and many more are expected in the near future in the context of large-
scale biodiversity sequencing initiatives such as the Darwin Tree of Life project and the Vertebrate
Genomes project [68]. Importantly, taxon sampling biases persist, and 86% of these genomes
are from vertebrates (6454) and arthropods (3383) – 95% if we include mollusks (518) and nem-
atodes (253). By comparison, since the publication of the first high-throughput single-cell tran-
scriptomics datasets in about 2015 [27,69–71], whole-organism single-cell atlases have been
published for 13 non-model animal species. Given the fast pace in the scale and sophistication
of single-cell methods in model species (and the wide availability of commercial solutions), the
current taxonomic sampling of single-cell atlases across the animal tree of life seems rather
modest.

A Natural History of Animal Cell Types – Challenges Ahead
There are several technical limitations that can explain the limited success of scRNA-seq analyses
in different animal groups. We highlight here some of the challenges based on the initial experi-
ence of whole-organism single-cell atlasing in non-model species.

Single-Cell Sampling
Much attention has been devoted to the molecular biology (reverse transcription, amplification
strategies, multiplexing, etc.) and physical implementation (droplets, microwells, etc.) of
scRNA-seq. However, the dissociation and handling of single cells from intact organisms remains
the main challenge in scRNA-seq analysis for non-model species. This not only affects the quality
of the scRNA-seq data but can also introduce important biases against particular cell types,
whose existence may remain hidden when working with previously unsampled organisms
('unknown unknowns'). For example, epidermal cells are considered to be particularly sensitive
to dissociation, and the same is suspected for cnidocytes in cnidarians. How then do we ap-
proach a completely novel species to obtain the most complete and minimally biased single-
cell atlas? There is no definitive answer to this question yet, but there are important considerations
to take into account.

Tissue/organism dissociation generally involves an enzymatic digestion step. Digestion is limited
to the shortest possible time (usually <30 minutes) because very aggressive dissociations can in-
duce cell death/stress [72]. Several proteases have been successfully used, typically including
trypsin, collagenases, chymotrypsin, cold-active proteases, and others. Digestion is followed
by an evaluation of induced cell death (generally aiming at less than 5–10%) before single-cell
transcriptome capture. In marine organisms, this strategy is usually combined with the use of
calcium/magnesium-free seawater (CMFSW), and in some cases this removal of divalent cations
is sufficient to effectively dissociate animals, as in some sponges and placozoans [35].
Trends in Genetics, Month 2021, Vol. xx, No. xx 5
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The 'fresh dissociation' strategy outlined previously has several downsides. First, although re-
maining tissue chunks are removed by serial filtering, cell doublets and triplets can be abundant
and confound scRNA-seq data analysis. A solution to this is to use FACS to discard dead cells
and cell doublets, as well as non-cellular debris. Coupled with direct cell lysis into multiwell plates,
this strategy has been successful in several marine species [35,38]. A second problem is the dif-
ferential sensitivity of cells to the dissociation treatments: some cells lyse early, whereas othermay
require more aggressive dissociation, and similarly some cells may not survive a FACS-sorting
procedure (if not captured directly after sorting). Another side-effect of fresh dissociations is
that ambient RNA is released by lysing cells (sometimes also called 'free-floating RNA'). This am-
bient RNAwill be captured together with each single-cell transcriptome and, althoughmethods to
model this effect have been developed [73,74], high levels of ambient RNA can confound the
analysis of complex atlases, in particular when noisy 'cells' can be misinterpreted as transitional
states between cell types.

A potential solution to some of these problems is to immediately fix cells after dissociation,
preventing any further transcriptional changes. Methanol fixation has been successfully used in
different species [37,45,75], and mild formaldehyde fixations have also been used [76]. Fixed
cells can be washed to reduce ambient RNA and, importantly, can be FACS-sorted and subse-
quently encapsulated by different methods. The downsides of fixation include reduced sensitivity
(less molecules detected per cell) and cell loss during the fixation process. Furthermore, fixation
does not prevent any sampling biases introduced during dissociation. To tackle this problem,
Garcia-Castro et al. recently introduced a novel method (based on acetic acid, glycerol, and
methanol; ACME) for simultaneous cell dissociation and fixation compatible with scRNA-seq
[77]. An important additional consideration when dealing with marine organisms is osmotic
stress. Freshly dissociated cells should be kept in marine water equivalents (such as CMFSW),
but the high salt concentrations inhibit the reverse transcriptase, making it incompatible with
scRNA-seq methods. Fixation prevents cells from bursting or developing osmotic shock
responses.

Another alternative is to completely avoid cell dissociation and instead focus on the analysis of
single nuclei extracted from (usually flash-frozen) whole tissues, such as brain [78,79] andmuscle
fibers [80]. This strategy minimizes any alterations introduced by dissociation, and the use frozen
tissues conveniently allows specimen sampling to be decoupled from single-cell processing – an
important consideration for species that may not be readily maintained in the laboratory. Single-
cell transcriptomes derived from nuclei show enriched intronic content (pre-spliced mRNAs) and
a slight bias towards longer transcripts (hypothesized to be due to nuclear export dynamics), but
overall the recovered cell type transcriptional profiles are highly concordant [81]. The main down-
side of single-nucleus RNA-seq (snRNA-seq) is an important loss of sensitivity relative to scRNA-
seq because the nucleus contains only a fraction of the mRNAs of the whole cell. Interestingly, a
recent snRNA-seq method improved sensitivity by a novel nuclear preparation method that re-
tains the endoplasmic reticulum and numerous attached ribosomes [82]. Given the advantages
of avoiding aggressive cell dissociations and compatibility with sample freezing, snRNA-seq
may represent an alternative worth considering for sampling cell types in non-model species
with minimal biases.

Overall, we are still far from an ideal, quasi-universal sampling strategy for whole-organism single-
cell analysis. Many of the challenges in studying organisms from the field (including sample trans-
port and preservation) are similar to those faced by clinical studies with patient samples [83], and
therefore methods and protocols developed in this context can be highly relevant for cell atlasing
in non-model species. In any case, it is important to emphasize the need to optimize sampling
6 Trends in Genetics, Month 2021, Vol. xx, No. xx
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(examining dissociation conditions, checking cell survival, measuring ambient RNA, etc.), partic-
ularly when working with species with little or no standard handling and processing protocols.

Data Analysis and Interpretation
The analysis and interpretation of whole-organism scRNA-seq data in non-model animal species
present specific challenges. A complication not directly related with scRNA-seq data is the quality
of the reference genome for the species under study. For the purpose of scRNA-seq data map-
ping, even relatively non-contiguous, fragmentary assemblies can suffice, but scRNA-seq is dra-
matically affected by missing or inaccurate gene annotations. Gene models are usually built using
a combination of direct RNA-seq evidence and de novo prediction [84]. However, gene annota-
tion pipelines often fail to model genes that are very poorly expressed and/or are very short. The
regulatory peptides in the placozoan Trichoplax adhaerens provide an interesting example. These
very short and (globally) poorly expressed genes were missed in the original gene annotation [85],
andwere thenmanually annotated in another study [86]. scRNA-seq analyses revealed that these
secreted regulatory peptides [87] are very highly expressed in specific, low-abundance cell types,
which explains why they were barely detected in bulk RNA-seq. Another common problem, par-
ticularly in small, gene-dense genomes, is incorrectly fused gene models which can effectively
mask the detection of poorly expressed genes 'fused' to highly expressed genes. scRNA-seq
data can be interrogated for evidence of such fusions. Finally, the most common gene annotation
artifact are incorrect 3′-untranslated region (UTR) annotations. Given that the majority of scRNA-
seq methods detect the 3′-ends of transcripts, this systematic bias in transcription end-site (TES)
annotation can have dramatic effects on gene detection [38,88]. In this case, scRNA-seq data
(which are, conveniently, strand-specific) can be used to reannotate TES. As a final note, it is pos-
sible to analyze scRNA-seq based on de novo assembled transcriptomes alone. Although the
same problems of poorly expressed (or highly expressed but in a rare cell type) transcripts
apply here, one can resolve a single-cell atlas with a deeply sequenced bulk transcriptome as a
reference [36,37]. However, working with a reference genome is essential to gain insights into
cell type programs beyond gene expression – that is, to interrogate the cis-regulatory elements
underlying cell type transcriptional phenotypes (see following text).

A second challenge with non-model organism scRNA-seq data analysis is that very often the me-
dian number of transcripts detected per cell is low [<1000 unique molecule identifiers (UMIs)
per cell]. Although this can be partially due to technical factors, there are biological differences
between species/lineages regarding the median transcriptional output of a differentiated cell.
For example, four species from different animal lineages sampled with the same technology
(massively parallel single-cell RNA-sequencing, MARS-seq) resulted in radically different median
transcript counts per cell [35,38]: ~950 in the cnidarian Nematostella vectensis, ~550 in the
placozoan Trichoplax adhaerens, ~1300 in the ctenophore Mnemiopsis leidyi, and >4500 in
the sponge Amphimedon queenslandica. Differences can be also pronounced within the same
lineage, for example, compared to Nematostella, the study of the cnidarian Xenia sp. reported
1100 transcripts/cell, whereas in the highly regenerativeHydra this number is much higher, closer
to 3000 transcripts/cell. A scRNA-seq analysis of Drosophila aging brains reported a threefold
decrease in neuronal transcripts per cell between old and young brains [51], suggesting links
between cellular age/differentiation and transcriptional output. The analysis of scRNA-seq
datasets with low numbers of transcripts per cell requires pooling of information across single
cells, and therefore must balance the need to summarize atlases by means of relatively few cell
types (that can be represented as clusters of single cell profiles) and the wish to define quantita-
tively complex differentiation gradients and states. In this context, highly cohesivemetacells [89]
can be derived from large groups of single cells, and these metacells can be used as building
blocks to power downstream analysis and atlas interpretations [35,38,113].
Trends in Genetics, Month 2021, Vol. xx, No. xx 7
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Another challenge of whole-organism scRNA-seq data is the extreme heterogeneity in transcripts
detected per cell: some cells are (much) bigger and/or transcriptionally active than others. There-
fore, analytical strategies may take this into consideration, starting with cell/non-cell discrimina-
tion. For example, the commonly used rank-UMI inflection point (knee-plot) strategy for
distinguishing cells from empty droplets can systematically discard low-transcript-content cell
types. Similarly, common analytical strategies for dimensionality reduction (e.g., principal compo-
nent analysis, PCA) or feature selection (e.g., finding variable genes) cannot be robustly applied to
these datasets directly, requiring specifically adapted computational approaches.

Finally, the interpretation of complex whole-organism single-cell atlases, especially in species with
little prior information, must rely on powerful gene functional annotations pipelines – that may be
based on protein domain architectures or gene name transfer based on orthology. In addition, an-
notating single-cell maps must be supported by data from exploratory tools for the interrogation of
different cell clusters, and should be supported by iterative validation (e.g., through broad in situ hy-
bridization analysis). In situ follow-up screens are also important to bridge the gap between cell
type catalogs and organismal tissue and body anatomy so as to further understand the functional
and spatial relationships among the transcriptionally defined cell types. An illustrative example of
the need for such crosstalk is the recent characterization of neurons in the ctenophoreMnemiopsis
leidyi [90], that correspond to previously unidentified transcriptional cell clusters in a scRNA-seq
atlas [35]. However, it is still unfeasible to validate all potential cell types identified in a scRNA-seq
study, exactly as it is unrealistic to aim at characterizing all genes in a newly sequenced genome.
Moreover, any future phylogenetic expansion in single-cell atlases will require sampling of species
that cannot be maintained in the laboratory and/or for which molecular tools are limited. In such a
scenario, comparison between closely related, deeply characterized species can help in the inter-
pretation of these novel atlases. Beyond that, the comparative analysis of single-cell maps is an
indispensable first step towards developing cell type evolutionary models.

Comparative Analysis of Single-Cell Atlases
As the taxon sampling of single-cell atlases increases, classical evolutionary questions can be
reappraised. First, effective comparative analysis of cell type programs [91] between species is
necessary to standardize and organize the new phenotypic space of cell types and gene pro-
grams. Second, based on such new comparative frameworks, models for the dynamics of cell
type evolution will need to be developed.

The first step in any cross-species cell type comparison is to define genome-wide gene orthology
relationships among the species involved [92]. Accurate gene orthology is essential both for su-
pervised, gene-focused comparisons (e.g., transcription factor usage), as well as in systematic
cross-species analyses (e.g., cell type clustering or tree building). Importantly, cell type compar-
isons necessarily involve large multigene families whose phylogenetic relationships and
orthology-based classifications are difficult to resolve and that often involve linage-specific expan-
sions (e.g., transcription factors, ion channels, or adhesion proteins). Therefore, orthology infer-
ence is necessary to explicitly account for orthologous/paralogous relationships in gene
expressionmatrix integration, for example by restricting some analyses to one-to-one orthologs.

Once a set of orthologs has been defined, we can broadly identify two strategies for scRNA-seq
cross-species comparison. A first set of methods directly integrate single-cell transcriptomes
from different species [93,94] and develop a representation of combined atlases, merged clus-
ters, and common reference maps. These strategies are difficult to scale to multiple species
and, most importantly, to large phylogenetic distances – where it is more difficult to infer gene
orthologies and to formulate explicit cell homology hypotheses. An alternative is to first resolve
8 Trends in Genetics, Month 2021, Vol. xx, No. xx
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the cell type map in each species and then compare the aggregated expression of cell clusters/
types across orthologs [38,66,95]. This strategy allows comparisons at different levels of clustering
granularity (e.g., comparing broad cell types or cell type subclusters) andmakes it easier to account
for non-unique or redundant gene orthology relationships. A hybrid strategy consists of single-cell
integration followed by cross-species cluster overlap in the integrated space [64,96]. 'Clustering-
first' methods have been applied, for example, to the systematic comparison of neuronal cell
type transcriptomes, revealing widespread conservation between mouse and human, and even
between mammals and reptiles. Interestingly, broad neuronal transcriptome similarity extends
even beyond vertebrates to the cnidarian Nematostella vectensis (Figure 2) [38].

Cell type trees are often used to represent cross-species cell type comparisons. In the same way
that within-species cell trees convey the underlying cell type hierarchical structure [18], cross-
species trees highlight cases of interspecies cell type transcriptome similarities that are stronger
than other intraspecies cell similarities. Trees are generally built using hierarchical clustering
based on a distance metric derived from gene expression (e.g., correlation, Jensen–Shannon di-
vergence, Mahalabonis distance) [38,97]. A different strategy consists of binarizing gene expres-
sion data to then apply maximum parsimony reconstruction [19] or to compute overlap-based
distances (e.g., Jaccard coefficient) [65]. Often, these cell type transcriptional similarity trees are
interpreted as indicative of evolutionary affinity. A first complication with deriving cell type homolo-
gies from transcriptional similarities is that a formal phylogenetic reconstructionmethod for cell type
transcriptomes is largely missing (but cf [98]). That is, we lack a model that describes the evolution-
ary divergence rates of the character states involved, for example the expression of one gene
within a cell type, or the rate of gain/loss of coexpression for a group of genes. These evolutionary
models can eventually be derived from the systematic comparison of cell type transcriptomes in
closely related species (representing a ground truth for homologous cell types), in a way analogous
to how DNA or amino acid substitution models were derived from sequence alignments.

A more acute problem is the fact that, in comparing transcriptomes, we are dealing with charac-
ters that are non-independent: genes are organized into coexpression modules that are highly
variable in size. Therefore, cell type transcriptome similarities will be dominated by genes in
TrendsTrends inin GeneticsGenetics

Figure 2. Comparing Cell Type Transcriptomes. (A) Correlation between organs/tissues of different vertebrate species (color-coded) and Nematostella vectensis
(Cnidaria) broad cell types. (B) (Top) Expression 255 orthologs driving neuron and brain/cerebellum similarity across vertebrate tissues and Nematostella cell types.
(Bottom) Enriched gene ontology terms among neuron/brain-coexpressed orthologs. Adapted, with permission, from [38].
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large gene modules. Moreover, effector gene modules are likely to be prone to convergent re-
cruitment by non-homologous cell types, and, reciprocally, specific cell type transcriptomes
may diverge from homologous cell types by the acquisition of a single (but large) new gene
module that dominates the transcriptome. The problems associated with comparative analyses
of atlases are further exacerbated at large evolutionary distances [13] and when considering
multiple species [99]. It is therefore important to devise taxon sampling strategies that will facilitate
high-resolution modeling of cell type evolutionary dynamics, for example by focusing on a few,
densely sampled clades. Beyond specific clades, it will be important to characterize recurring
events of cell type innovation, loss, and merging, and to explore the dynamics of gene module
remodeling, 'lateral transfer' of entire gene modules between cell type programs, and additional
archetypical evolutionary scenarios that may still be uncharacterized.

Cell Type Molecular Evolution – Decoding the Evolutionary Dynamics of Cell
Type Regulatory Programs
An alternative to comparing whole cell type transcriptomes is to focus on the expression of com-
binations of transcription factors (TFs), often called terminal selectors [100], as the key regulators
of cell identity programs [2]. The implicit assumption is that TFs can represent a good proxy for the
gene modules used in that particular cell type. A second underlying hypothesis when focusing on
TFs is that regulatory similarities are more evolutionary constrained and therefore better approx-
imate cell type homology (as compared to effector gene usage). However, we still do not know
enough regarding the frequency by which cell-identity TFs can be replaced, especially given
the intricate evolutionary history of TF gene families. Newly derived cell type atlases highlight
the role of TFs from large multigene families (e.g., zf-C2H2, Ets, or Sox TFs). Such atlases also
uncover multiple expressed paralogs that share very similar DNA-binding characteristics
[101–103]. In addition, tens of different TFs are often expressed in a particular cell type (e.g., in
sponge choanocytes [35]), making it difficult to determine which of them are the upstream drivers
of cell type identity and what is the evolutionary significance of the conservation of a few of those
TFs. Overall, we lack a systematic understanding of the extent to which TF expression is con-
served between homologous cell types, and therefore of whether TF usage can be widely used
for cell type evolutionary comparisons.

TFs control gene expression by recognizing and binding to short sequence motifs (6–12 bps)
located in cis-regulatory regions (promoters and enhancers) of downstream genes [104].
Cell type transcriptional identity is strongly recapitulated by sequence motif enrichment
[35,38] (Figure 3), representing the cis-regulatory embedding of the cell type program
[100]. In addition, with a few exceptions (such as zf-C2H2 TFs), the binding sequences of
TFs are very often conserved across large phylogenetic distances [102,103,105]. This
opens the possibility of comparing cell types not through their gene expression profiles but
instead through the set of regulatory sequences that define the cell type program. A recent
study pioneered the idea of cross-species cis-regulatory sequence comparison [106]. Work-
ing on melanoma cell lines in different vertebrate species, Minnoye et al. uncovered a highly
conserved cis-regulatory program that involves combinations of four TF-binding (SOX10,
TFAP2A, MITF, and ETS) motif enhancer regions that most often showed little or no global
sequence conservation. Building on this dissection of melanoma enhancer motif syntax,
the authors further modeled the effect of evolutionary mutations in enhancer function, as de-
fined by accessibility.

The different elements that constitute a cell type gene expression program (TFs, effector genes,
TF binding sites, regulatory connections, etc.) do not necessarily have congruent evolutionary
histories [107,108], in the same way as gene trees are not always in agreement with species
10 Trends in Genetics, Month 2021, Vol. xx, No. xx
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Figure 3. Genomic Embedding of Cell Type Transcriptional Programs. (A) Trichoplax adhaerens (Placozoa) cell type gene expression map. (B) Comparison of
over-representation of a specific sequence motif in the promoter of metacell-expressed genes (motif enrichment) and the expression across metacells of the Olig1
transcription factor, the potential binder of motif13. (C) Comparison of Trichoplax motif13 and the highly similar binding site for Homo sapiens Olig1, suggesting that
motif13 may also represent the binding site for Trichoplax transcription factor (TF) Olig1. (D) Motif enrichment heatmap in Trichoplax metacell-specific promoter
sequences. Based on data from [35].
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trees (as a result of horizontal gene transfers, incomplete lineage sorting, etc.). By combining
sequence motif analysis with high-resolution chromatin accessibility data [109] and even
single-cell accessibility data [110], we should be able to systematically reconstruct cell type
gene regulatory networks in non-model species. Disentangling and comparing regulatory pro-
grams in multiple closely related species will enable the development of quantitative models of
cell type evolution, including evolutionary rates of distinct regulatory characters: TF usage/
replacement, sequence motifs, regulatory interactions, gene module composition [88], and
more. These models should constitute the basis of a future cell type phylogenetics and will
help to address important questions in cell type evolution: are these evolutionary rates univer-
sally conserved [111], or are there particularly 'fast-evolving' cell type programs? How robust
are cell type genetic networks, and which components are particularly evolvable? Finally, iden-
tifying slowly evolving regulatory characters (e.g., sequence motifs) could help to formulate bet-
ter cell type homology hypotheses.

From a broad perspective, the feasibility of inferring a comprehensive cell type phylogeny across
species and phyla remains largely unclear. Such feasibility depends on the timescales and degree
of constraint for traits that can be inferred robustly; in that respect, it is crucial to consider system-
atically all of the multiple molecular scales underlying gene regulation and cell type specification
(TFs, regulatory elements, gene modules). In any case, comparison of cell type programs within
densely sampled clades will be an essential first step to help us to define which characters can
be used to infer cell type phylogenies and at what resolution. At the very least, such comparative
studies will reconstruct specific histories and identify general trends in the evolution of cell type
programs.
Trends in Genetics, Month 2021, Vol. xx, No. xx 11
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Outstanding Questions
What are the optimal single-cell
sampling strategies for generating un-
biased and highly compatible cell
atlases in different species? Is it possi-
ble to develop universal sampling
methods and standards?

What is the ideal granularity by which
one should define a cell type? How
should we handle a differentiation
continuum, or cells that respond to
multiple signals?

What characters can we use
to approximate the evolutionary
relationships between cell types
(e.g., global gene expression versus
TF expression)? What is the best way
to codify the states for these characters
(e.g., binarizing gene expression)?

More generally, what are the evolutionary
rates of the different elements of a cell
type identity program (TF usage, gene
modules, cis-regulatory regions, TF bind-
ing motifs)? Are these rates the same in
all cell types and in all organisms?

How does the underlying genome
evolutionary dynamics (gene duplication/
Concluding Remarks: Towards a Cell Type Tree of Life
Whole-organism scRNA-seq analysis holds the promise to develop comprehensive catalogs of
cell types in phylogenetically diverse systems. Reference cell type molecular atlases will crucially
advance our understanding of the biology of understudied animal groups [112]. This is in a way
similar to how the sequencing and annotation of genomes of unsampled animal lineages un-
covers novel biology and enables comparative genomic studies [67]. The most immediate chal-
lenge is to develop methodological standards to build cell type maps in the most unbiased and
consistent manner (see OutstandingQuestions). Only with dense and technically compatible phy-
logenetic sampling we will be able to start a systematic comparative study of cell type programs.
Based on this sampling, cell type comparative biology will enable the development of cell type
phylogenetic models and can promote our understanding of genetic changes associated with
cellular novelty. Overall, this can offer transformative insights linking classical models of (genomic)
molecular evolution with an intermediate molecular phenotype: cell types and their associated
gene regulatory networks.
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