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Understanding the diversity and evolution of eukaryotic microorganisms
remains one of the major challenges of modern biology. In recent years, we
have advanced in the discovery and phylogenetic placement of new eukaryotic
species and lineages, which in turn completely transformed our view on the
eukaryotic tree of life. But we remain ignorant of the life cycles, physiology
and cellular states of most of these microbial eukaryotes, as well as of their
interactions with other organisms. Here, we discuss how high-throughput
genome-wide gene expression analysis of eukaryotic single cells can shed
light on protist biology. First, we review different single-cell transcriptomics
methodologies with particular focus on microbial eukaryote applications.
Then, we discuss single-cell gene expression analysis of protists in culture and
what can be learnt from these approaches. Finally, we envision the application
of single-cell transcriptomics to protist communities to interrogate not only com-
munity components, but also the gene expression signatures of distinct cellular
and physiological states, as well as the transcriptional dynamics of interspecific
interactions. Overall, we argue that single-cell transcriptomics can significantly
contribute to our understanding of the biology of microbial eukaryotes.

This article is part of a discussion meeting issue ‘Single cell ecology’.
1. Introduction
Microbial eukaryotes, also known as protists, display an astonishing variety of
life cycles, cell morphology and structures, metabolism, and ecological strat-
egies. In fact, phylogenetic analyses show that protists represent the vast
majority of eukaryotic clades and lineages [1,2], and environmental sampling
continues to reveal hidden eukaryotic diversity that remains uncharacterized
[3]. Microbial eukaryotes are invisible to the naked eye, but they are present
almost everywhere—from human guts and the soils we stand on to acidic
hot springs and Arctic ice shelves—and they play major roles in these diverse
environments. For example, about half of carbon dioxide fixed globally is attrib-
uted to photosynthetic microbial eukaryotes [4]. Moreover, many protists are
characterized by processes and features rarely or never found in multicellular
organisms: silicification, mixotrophy, apicoplasts, extensively fragmented gen-
omes, and much more. However, our understanding of the cell biology,
physiology and evolution of most microbial eukaryotes remains extremely lim-
ited owing to both historical reasons (biased research focus on animal, plant,
and fungal model species and a few parasitic protists) and technical constraints
(associated with unculturability, small cell sizes, low abundance, etc.) [5,6].

Community sequencing and single-cell genomics technologies are contri-
buting to mitigate this bias. Metabarcoding studies profile the diversity of
ensemble communities, usually by performing targeted sequencing of selected
markers such as the 18S ribosomal gene [7]. Metagenomic and metatranscrip-
tomic analyses further improve our knowledge on the functions and
physiology of protist communities in the environment [8–10]. By contrast,
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single-cell genomics approaches target individual, selected
cells [11]. A single cell generally contains only one or two
copies of each DNA molecule and, for this reason, single-
cell genomic methods require massive amplification prior to
sequencing. This amplification very often results in biased
and partial coverage of the genome sequence [12,13]. An
alternative to single-cell DNA sequencing that is gaining
popularity is the sequencing of transcriptomes from single
cells [14,15]. However, the obvious limitation of single-cell
transcriptomics is that we can only sample genes and only
those that are expressed above certain thresholds defined
by the technical sensitivity.

So far, single-cell genomics/transcriptomics in microbial
eukaryotes have been employed to characterize taxonomic
diversity. These studies shed light on uncultured species
and improved our understanding of the eukaryotic tree of
life [16,17]. However, rapid advances in single-cell tran-
scriptomics should allow us to go beyond phylogenetic
charting of protist diversity and to begin quantitatively
analysing the life cycles, cell states, physiology and
ecological interactions of unicellular eukaryotes from the
perspective of gene expression.
90098
2. Single-cell transcriptomics: a brief state-of-
the-art and specific challenges for unicellular
eukaryotes

The last few years have seen tremendous development of
single-cell RNA sequencing (scRNA-seq) technologies and a
rapid increase in the number of studies using this method.
Most of these studies sampled vertebrate cells, but the same
procedures have also been successfully applied to other
eukaryotes [18–22]. The growing diversity of scRNA-seq pro-
tocols and analytical tools can seem overwhelming. To help
ecologists and protistologists who are interested in using
this technique, here we divide scRNA-seq into four basic
steps and summarize common options for each step (figure 1):
sampling, cell isolation, cell lysis, and library preparation.
Additionally, we discuss specific challenges relevant to apply-
ing scRNA-seq to microbial eukaryotes. We recommend
excellent specific reviews for detailed discussions on the mol-
ecular biology [23,24], performance and estimated costs
[25,26], and data analysis [27,28] aspects of scRNA-seq.

(a) Sampling and preservation
Sampling strategy is a critical component in capturing the
native transcriptomes of the cells of interest (figure 1a). Ideally,
fresh cells should be isolated and immediately lysed in an
RNA-stabilizing buffer. However, this is usually not the case,
even in a laboratory setting with model organisms. The time
needed for harvesting samples, dissociating them into single
cells, and isolating cells of interest may affect the RNA compo-
sition of the cells. This can be particularly dramatic in the case
of unicellular eukaryotes, as changes in cell states/life stages
have been shown to be extremely fast in many species [29,30].

Although most single-cell studies are performed on fresh
cells, several chemicals have been employed to try to preserve
native cell states in animal samples, including methanol [31],
dimethylsulfoxide [32], crosslinkers that require later reverse
cross-linking such as paraformaldehyde [33] and dithio-bis-
(succinimidyl propionate) [34], and proprietary reagents
such as RNA-Best [35] (figure 1b). After preservation, cells
can be stored either at 4°C [34,35] or cryopreserved at −80°C
[31–33]. It is important to note that, with the exception of
methanol fixation, these different preservation methods have
only been tested for specific tissues/cell types and its applica-
bility to other samples is still unclear and may require
optimization.

There are two major advantages to sample preservation
in addition to reducing artefacts in RNA pools. First, by
fixing cells in their native states, sampling can be
decoupled in time and space from cell isolation, allowing
more flexible study design and scheduling that are less
dependent on equipment availability. Thus, it not only
enables studies involving intensive sampling in the labora-
tory, but also sampling in the field where there might be no
access to facilities for cell isolation and downstream pro-
cessing. The second advantage is that fixation increases
cell permeability, which can be a critical factor for some
protist species (see below).
(b) Isolation of single cells
The second key step in all single-cell techniques is cell iso-
lation. The different isolation strategies for scRNA-seq differ
in: (i) processing time, (ii) cost per cell, (iii) throughput (i.e.
number of cells processed in a single experiment); (iv) doublet
rates (i.e. fraction of two or more cells encapsulated together),
and (v) the possibility to obtain phenotypic information to
further identify and select/filter cells (figure 1c,d). Single-
cell pipetting with microcapillary tubes, manually or using
automated devices, is the simplest yet probably the most
widely used approach to isolating single eukaryotic cells for
diversity and ecological studies [14–16,36]. Albeit slow and
tedious, accurate observation of cells under the microscope
is sometimes essential to find the target cells in complex com-
munities where only morphological information is available
for cell identification. For high-throughput separation of
single cells, fluorescence-activated cell sorting (FACS) systems
have been the most widely used instruments, both in model
systems and for studies concerning microbial ecology and
diversity in the environment [37]. In scRNA-seq applications,
FACS is used to select specific populations of interest and col-
lect single-cells in 96- or 384-well plates [38]. FACS can
simultaneously record multiple parameters for each sorted
cell and these metadata can be used together with single-
cell gene expression. FACS-enabled scRNA-seq offers
additional advantages such as strict filtering of cell doublets
and non-cellular particles (which can be very abundant in
environmental samples). Moreover, in the case of complex
communities in the field, FACS can be used to further target
specific cell populations either using intrinsic cell properties
(e.g. presence of pigments) or in combination with staining
(e.g. against specific organelles).

A different technology commonly used to isolate single
cells is microfluidics [39]. With lab-on-a-chip devices, cell iso-
lation, lysis, and other reactions can be integrated into a single
chip. The earliest available commercial platform designed
specifically for single-cell analyses was the Fluidigm C1
system [40]. Although it is not possible to select cells, the C1
system allows imaging of each capture site for the presence
of single cells and their viability [41]. Fluidigm C1 has been
successfully used to isolate single cells of unicellular algae
for RNA sequencing or quantitative polymerase chain reaction
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field are either processed immediately or preserved for later use. (c,d ) A variety of single-cell isolation platforms provide different throughput and possibilities to
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reverse transcription; UMI, unique molecular identifier. (Online version in colour.)
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(qPCR) [14,42]. However, the restrictive cell size ranges of
these chips [40] can be a limiting factor for cells out of the
size range [14] or for a mixture of cells of very different
sizes. Other limitations of the C1 system are the low through-
put (tens to hundreds of cells) and high cost. To overcome this
limitation, high-throughput droplet microfluidics-based pro-
tocols have been developed, such as Indrop [43], Drop-seq
[44] and the commercial 10× Geonomics Chromium platform.
In thesemethods, ideally a single cell is co-encapsulatedwith a
hydrogel or bead (carrying primers with a barcode to identify
each cell) in a nanolitre-volume aqueous droplet surrounded
by oil. This strategy allows efficient capture of thousands of
cells in just a few hours, but it also has specific drawbacks.
The first limitation is the presence of cell doublets, given that
the encapsulation is a random Poisson process. This effect
can be controlled by diluting the samples and leaving most
of the droplets empty, but in practice the doublet rates are
still up to 25–30% in many microfluidics platforms [45].
Another limitation is the impossibility to select or discard
specific cells and non-cellular particles. Finally, it is difficult
to distinguish cells from empty droplets, which complicates
downstream data analyses [46].

Another cell isolation strategy for high-throughput
scRNA-seq is based on ultra-small wells, such as nanolitre
wells in the ICELL8 method [47] and picolitre wells in the
agarose microwells methods [48]. Single cells are trapped
in wells (each with a unique cell barcode attached or
receiving a barcoded bead) using a limiting dilution strat-
egy: most wells are left empty in order to maximize the
fraction of wells with a single cell under Poisson distri-
bution. Both ICELL8 chips and agarose plates can be
manually inspected under a microscope. The ICELL8
system can be further coupled to an imaging and analysis
system for automatic identification of empty, doublet, or
multiplet wells, allowing processing of only single cell-
containing wells. The same imaging can also be used to
evaluate cell viability [47].

Finally, while it is essential to distinguish RNA contents
of individual cells for scRNA-seq, it does not necessarily
mean that cells need to be in separated physical compartments
like the aforementioned wells, droplets or microwells. Two
recently published methods, sci-RNA-seq [49] and SPLiT-seq
[50] take a radically different approach and use the cells them-
selves as compartments to keep RNA isolated. The key to this
strategy is the usage of two or more rounds of randommolecu-
lar barcoding (using barcoded oligonucleotides during reverse
transcription, ligation and/or PCR amplification reactions).
Different groups of intact (but permeabilized) cells are first
barcoded, then pooled together, and finally randomly separ-
ated in groups again and receiving new barcodes. This can
be repeated multiple times and potentially separate millions
of single cells [50,51].
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(c) Cell lysis
Following cell isolation, a critical step is to lyse each single
cell to efficiently release RNA (figure 1e). Little attention is
devoted to this key step by most scRNA-seq methods because
animal cells are easily lysed when placed into a detergent-
containing hypotonic buffer. But the situation with protists
is very different, as many have diverse, often poorly charac-
terized, cellular structures that might make cell lysis
extremely difficult (cell walls, cysts, spores, tests, exoskele-
tons, sheaths, thecae, etc. [52]). Therefore, simple detergent
or hypotonic buffers might not work for cells with these pro-
tective outer structures or contractile vacuoles capable of
osmoregulation [53]. If the components of these structures
are known and specific degrading enzymes are available,
they can be added to the lysis buffer, as in the use of zymo-
lase for yeast scRNA-seq [20]. An alkaline solution may
also be effective for cell lysis, and is commonly used to lyse
bacterial cells for single-cell genome sequencing [54]. There
are also physical approaches to lyse cells, including freeze–
thaw cycles or heat as employed by microbial single-cell
genome sequencing protocols [55]. If all of these are unsuita-
ble for the cells of interest, acoustic, electrical, optical (laser),
mechanical (nanoknifes), or other physical methods may be
considered as summarized by Brown & Audet [56]. However,
these physical disruptions are only compatible with multi-
well plate-based methods such as MARS-seq [38] and
ICELL8 [47], but not with microfluidic isolation platforms.

(d) Library preparation and sequencing
Library preparation for scRNA-seq converts the RNA mol-
ecules in each single cell into a uniquely barcoded DNA
library that can be pooled with other single-cell libraries
and sequenced together. Beyond this general principle,
scRNA-seq protocols are diverse in terms of (i) which type
of RNAs are captured (only mRNAs versus all RNAs),
(ii) how transcripts will be quantified (with or without tran-
script barcodes), (iii) which part of the transcripts to
sequence (50, 30 or full-length), (iv) library amplification,
and (v) barcoding strategies (figure 1f ). Below we go through
the basic parts of scRNA-seq library construction, and illustrate
the different options with example protocols.

(i) Targeting RNAs. The first step in all scRNA-seq
library preparation protocols is the conversion of
RNAs into complementary DNAs (cDNAs) by reverse
transcription (RT). Barcodes are usually introduced at
this step to uniquely identify the transcriptome of each
cell. Because the reverse transcriptase requires the 30-
end of an oligonucleotide primer to start synthesis,
the transcripts we want to analyse determines the
choice of primers. The vast majority of scRNA-seq
studies target mRNA molecules and, to this end, pri-
mers with oligo-dT sequences (complementary to the
poly-A tail of typical eukaryotic mRNA) are used.
Note that oligo-dT enriches mRNA in the library, but
it does not exclude other RNA from the library,
especially rRNA [22], which comprise up to over
90% of a cellular transcriptome. On the other hand,
there are protocols that target RNAs other than poly-
adenylated mRNA. For example, in host–pathogen
systems, specific primers can be added to capture
pathogen transcripts, as in virus-inclusive scRNA-seq
analyses [57,58]. There are also protocols like scDual-
seq [59] that target all types of RNAs by priming the
RT with random hexamers (oligonucleotides with six
random nucleotides at their 30 end). An issue with
random hexamer priming is that rRNA will represent
the largest fraction of sequenced molecules. To avoid
this, RamDA-seq uses not-so-random primers:
random six-nucleotide sequences that avoid matching
any rRNA sequence [60].

(ii) Transcript tagging. Aside from barcodes for cells, it is
increasingly common to add barcodes to transcripts
[61]. These unique molecular identifiers (UMIs) are
random sequences (usually 8 to 20 nt in length)
included in the RT primer and incorporated into the
cDNA during RT, such that each transcript from a
gene will receive a different barcode. Single-cell
cDNAs are massively amplified (by PCR and/or in
vitro transcription, see below) before sequencing and
UMIs are used to avoid amplification biases and accu-
rately quantify gene expression. In contrast to read-
based expression metrics, UMI counts do not require
normalization, are less affected by amplification bias,
and provide absolute count with a defined zero that
can be compared between cells [26,62]. The main
drawback of using UMI is that they must be attached
to either 30 or 50 end of the cDNA. With Illumina short-
read sequencing, this means that only one end of the
transcript can be sequenced together with the UMI.

(iii) Transcript coverage. An important difference between
scRNA-seq protocols is the sequencing of full tran-
scripts or just the 50 or 30 ends. In full-transcript
protocols such as Smart-seq2, which uses template-
switching oligonucleotides for full-length RT [63], all
the fragments from cDNA will be sequenced and can
provide information on the internal sequence and struc-
ture of RNAmolecules, alternative splicing, and relative
abundances of isoforms. Full-length sequencing
methods show higher sensitivity [25], but they do not
have strand-specific information and, importantly, are
incompatible with the use of UMIs. By contrast, in par-
tial sequencing protocols only one end of the transcript
(generally the 30, sometimes the 50) will be sequenced.
With the advent of long-read sequencing technologies
like Oxford Nanopore and PacBio (figure 1g), methods
to sequence full unfragmented transcripts with UMIs
are under development [64,65]. When a reference
genome/transcriptome is available, partial sequencing
methods are generally preferable as they allow accurate
gene expression estimation using UMIs. But when
sampling, for example, protists from a complex environ-
ment, full-length transcript sequencing is advantageous
and could be potentially used to reconstruct and quan-
tify unannotated transcriptomes, as discussed in §4.

(iv) Library amplification. Almost all library preparation
protocols involve the amplification of signal and the
addition of adapters for specific sequencing platforms.
For scRNA-seq, which usually deals with hundreds to
tens of thousands of cells, amplification is crucial, but
can also be a source of biases. Compared with the
more commonly used PCR, in which the amplification
is nonlinear and depends on the sequence compo-
sition [26], in vitro transcription (IVT) with the T7
promoter (as adopted in some scRNA-seq protocols



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20190098

5
[38,43,66]) provides linear amplification. However,
IVT has the disadvantages of another round of RT
and 30-end coverage biases [26]. Two options are avail-
able for adding sequencing adapters. In addition to
the traditional way of ligating one adapter to one
end of a fragment, tagmentation, a portmanteau of
tagging and fragmentation, relies on a specially engin-
eered transposase Tn5 to fragment DNA and add
adapters at the same time, thus greatly streamlining
scRNA-seq protocol [63].

(v) Barcoding. As aforementioned, barcoding is key to
scRNA-seq for distinguishing between individual
cells. It can work at different levels (cellular barcodes,
sample or pool barcodes, and sequencing indices) and
in different steps (RT priming, RT template-switching,
ligation, extension through PCR, etc.). The barcoding
strategy, together with the cell isolation method and
sequencing throughput, determines the number of
single-cell transcriptomes that can be profiled at
once. The simplest way for barcoding cells is to use
a single set of sequencing indices, as in Smart-seq2
[63]. Combinatorial indexing strategies allow scaling
up of the number of cells that can be processed
together. For example, in MARS-seq [38], 384 cells
are barcoded during RT and then different pools of
384 cells are distinguished with additional barcodes
introduced by ligation.

In summary, there is no single scRNA-seq strategy that
would be the best for all studies, especially given the diversity
of unicellular eukaryotes and ecological questions to be
addressed. Variables like the number of cells to be sampled,
the cell size, the types and abundances of transcripts, the avail-
ability of a reference genome/transcriptome or the need to
discriminate specific cell populations will define the most
suitable strategy in each scenario.
3. Single-cell transcriptomics of cultured protists
In recent years, an increasing number of protist species from
diverse lineages have been studied under laboratory culture
conditions, providing novel insights into their cell biology
and life cycles. The ability to regularly grow and differentiate
these organisms in culture provided an opportunity for
diverse functional genomics studies. For example, cell
stage-specific transcriptomes for protists with complex life
cycles allowed the dissection of gene expression phenotypes
associated with cell growth (e.g. in the diatom Thalassiosira
pseudonana [67]) and with temporal cell types in organisms
like the ichthyosporean Creolimax fragrantissima [68], the
choanoflagellate Salpingoeca rosetta, the amoebozoans Dictyos-
telium discoideum and Dictyostelium purpureum [69], the
apicomplexan Plasmodium falciparum [70,71] or the filasterean
Capsaspora owczarzaki [30]. Furthermore, genome-wide chro-
matin profiling experiments in some of these species defined
the regulatory genome dynamics underlying temporal cell
differentiation [72–74].

However, bulk genome-wide profiling methods require
precise synchronization of large cell populations. This is not
possible for many protist species and, even for those where
some level of staging can be achieved, we might be comple-
tely missing additional heterogeneity and rare cell states.
scRNA-seq bypasses these limitations and offers an unbiased
tool to characterize the transcriptional programmes underlying
distinct cell states, as well as the temporal transcriptional
dynamics associated with growth and cell differentiation.
The power of scRNA-seq to dissect protistan molecular pheno-
types is illustrated by two hallmark single-cell studies in
Plasmodium species. Reid et al. [22] sampled full transcripts
in 500 P. falciparum and Plasmodium berghei single cells using
high-coverage Smart-seq2, which sequences full-transcript
fragments without UMIs. The authors found sharp, non-
continuous transcriptional transitions between life cycle
stages, in contrast with the smooth transitions previously
reported by bulk transcriptome analyses and probably result-
ing from averaging of imperfectly synchronized cell
populations (see also [71]). In another study, Poran et al. [75]
opted for a different approach, sampling many more cells
(18 000 single cells at different time-points), but at a relatively
lower coverage using Drop-seq (average of approx. 500 genes
per cell, compared with 1900 in Reid et al.), which uses
UMIs and samples the 30-end of transcripts. This
dense sampling allowed the authors to define cell differ-
entiation transcriptional signatures in P. falciparum at
high resolution and to model the gene regulatory network
of sexual commitment, which involves serial activation of
three AP-2 transcription factors. More recently, UMI-based
scRNA-seq has been applied to characterize transcriptional
heterogeneity and stress responses in Saccharomyces cerevisiae
[20] and Schizosaccharomyces pombe [21].

scRNA-seq also creates the potential to systematically
study microbial interactions at high resolution, including
symbioses, predation and infections. In contrast to single-
cell genome sequencing, scRNA-seq allows us to go beyond
the identification of the interacting organisms and to charac-
terize the gene expression signatures and dynamics of
interactions. Pioneering work in this direction comes from
studies of human/mouse pathogens [76], including influenza
[77], dengue and Zika viruses [57], and Salmonella [78]. For
example, transcriptomic profiles of single cells helped esta-
blish the causality between pathogen variability and
heterogeneous host cell immune responses [78]. As discussed
above, most scRNA-seq methods target polyadenylated
RNAs (i.e. mRNAs and a few long non-coding RNAs). To
study a known pathogen without polyadenylated RNAs,
one potential strategy is the use of targeted oligonucleotides
(e.g. against Zika and dengue viruses [57]), but this requires
a priori knowledge of the genome and only detects copies of
the RNA genome or a specific transcript. Another strategy
that allows both host and pathogen whole-transcriptome pro-
filing is the use of random primers to capture both polyA and
non-polyA types of RNAs. This strategy has been successfully
applied to bacterial infections [59].

Finally, scRNA-seq technologies should enable the charac-
terization of multicellular structures found in many protists,
such as colonies, cell aggregates, or fruiting bodies [79]. Pro-
gress in this direction will shed light on exciting questions,
such as the gene regulation involved in colony development,
the existence of cell differentiation within them, the molecular
phenotypes of potential cell types, and much more. Unfortu-
nately, a severe limitation of current scRNA-seq methods is
the low efficiency of cell recovery (fraction of profiled cells
to the initial input). This precludes the analysis of single
small pluricellular structures. Instead, current studies on
such structures, for example early-stage animal embryos,
rely on the accurate synchronization and pooling of multiple
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specimens [80,81]. This strategy might not be adequate for
protists where synchronization is not possible or when
inter-colony/aggregate variability is expected.
74:20190098
4. Towards single-cell transcriptomics of
microbial eukaryote communities

A natural extension of scRNA-seq analysis of protists in cul-
ture is the direct single-cell characterization of environmental
communities. Briefly, cells would be isolated from the
environmental sample (figure 2a), ensuring that only single
cells (but also any interactors such as prey, pathogens,
parasites or symbionts within them) are isolated in each
compartment. Then the transcriptome of each single cell
(plus any potential interactors) would be sequenced
(figure 2b). Single cells would be aggregated into low-
granularity clusters, representing taxonomic groups
(figure 2c) and then the composite transcriptome of these
clusters would be used to taxonomically identify the clusters
(figure 2d ), for example using rRNA sequences (see below).
Finally, downstream analysis within and between clusters of
cells would allow the systematic characterization of
(figure 2e): (i) the components/diversity of the community,
similar to what we would obtain from metabarcoding or
single-cell genomics; (ii) physiological states among each of
these components, analogous to what we would obtain
from a metatranscriptomic analysis but with single-cell
resolution; (iii) life cycle stages or temporal cell types for
each of the members of the community; and (iv) microbial
interactions and their associated transcriptional pheno-
types. Many of the predictions of these analyses could be
validated by using multiplexed fluorescence in situ hybrid-
ization [82,83], targeting markers for different temporal
cell states/cell types in a particular species or against mar-
kers for multiple species (to validate interactions and
community composition).

However, considering the methodological state-of-the-art
discussed in §2, we foresee important technical and analytical
challenges associated with realizing single-cell ecology
experiments of this nature.
(i) Sampling bias. An essential aspect when sampling a
heterogeneous community will be the use of a meth-
odology agnostic to distinct cell properties. For
example, differences in cell lysis efficiency can be a
major source of bias. In this sense, plate-based
methods could be preferable to droplet-based
methods, as harsher lysis conditions can be applied
(freezing cycles, sonication, etc.). Another source of
biases is cell size, but this is mainly an issue with Flui-
digm C1 arrays. Finally, if protist-pathogen
interactions are of interest, the most commonly used
methods that target only polyA-transcripts may not
be the best option. Instead, random hexamers should
be used to capture all kinds of RNAs. This might
have the (usually undesired) side effect of profiling
rRNAs. However, in this specific application, this
could be favourable and aid in the taxonomic assign-
ment of single cells, given the existence of well-
curated taxonomic databases based on 18S ribosomal
sequences [3]. In practice, most current polyA-based
scRNA-seq methods profile rRNA, either because
some rRNAs can be polyadenylated and/or because
rRNAs are generally very highly expressed. Finally,
the strategy described here aims to be essentially
unbiased, so in communities unevenly dominated by a
few species, only deep single-cell sampling would
uncover rarer community components.

(ii) Targeting eukaryotic cells and identifying cellular
interactions. In complex environmental samples it
would be necessary to discriminate eukaryotic cells
from non-cellular particles and non-eukaryotes. Cell
selection through FACS can solve this issue by target-
ing only cells of interest. FACS additionally allows the
strict selection of only single cells, which may contain
within them endosymbionts, prey, parasites and/or
pathogens. This is another major advantage when
studying cell–cell interactions, as it is possible to
distinguish between true intracellular interactions
and random aggregates. The latter could be
removed during cell dissociation/homogenization
before sampling, and FACS would provide a
second level of exclusion of doublet or multiplet
event. In contrast to FACS, droplet microfluidic
applications with higher doublet rates may result
in some false positive interactions owing to random
co-encapsulation events.

(iii) Lack of reference genomes. Another problematic
aspect of the single-cell analysis of a multi-species
ensemble would be the absence of reference
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genomes/transcriptomes to map sequencing reads, at
least for the majority of sampled cells. To address this
problem, full-length scRNA-seq methods such as
Smart-seq2 would be advantageous, with the down-
side of losing strand-specific information, the lower
cell throughput of this method, and the impossibility
to use UMIs to accurately quantify gene expression.
Future developments in PacBio- or Oxford Nano-
pore-based scRNA-seq methods [64,65] may provide
a solution for obtaining tagged full-length transcripts.

Even with full-length transcript sequencing, the
transcriptomes recovered for each cell are expected
to be extremely partial. One solution is to use a pool-
ing strategy: de novo transcriptomes could be
assembled by pooling similar cells into taxonomic
clusters, generating a composite reference transcrip-
tome [13] (figure 2c). This pooling strategy relies on
the repeated sampling of similar cells from a popu-
lation (in this case, from the same species) and it is
commonly used for the identification of cell types in
animal scRNA-seq data (e.g. with MetaCell analysis
[84]). The only limitation of this resampling strategy
is imposed by throughput: with more single cells pro-
filed (ideally thousands), rarer species/cell types can
be detected.

(iv) Phylogenetic classification and interspecific inter-
actions. Composite transcriptomes, even if far from
complete, would easily enable classification of these
single-cell taxonomic clusters, using standard phylo-
genetic procedures and public molecular databases.
These same searches should allow us to identify com-
posites containing two or more species and to zoom in
and characterize both the identity and the frequency of
these interactions, as well as the transcriptional signa-
tures of different cells states in the interacting species
(figure 2).
(v) Single-cell morphotyping. Extremely valuable additional
information would be to image cells before transcrip-
tome profiling and in a way that transcriptomes can be
unambiguously associated with specific images. A simi-
lar approach has been applied to low-throughput
single-cell genomic sequencing of marine protists, pro-
viding complementary information on the sampled
organisms [16,36]. In a recent study in fission yeast,
over 2000 single-cells were manually isolated in
96 well-plates, imaged, and then transcriptomically
profiled [21]. While this could in principle be adapted
to environmental samples, the method is extremely
time-consuming and the scalability very limited. A
more promising future direction is the development
of high-throughput microscopy/imaging cytometry
coupled to cell sorting, for which proof of concept
is emerging [85].

Overall, single-cell transcriptomics has transformed the
study of animal systems, from tissue and cell type characteriz-
ation to cell state dynamics and development. We anticipate its
growing use for studies on the regulation and heterogeneity of
gene expression in microbial eukaryotes, with pioneering
studies in Plasmodium cell differentiation and yeast growth.
Furthermore, we argue for its potential value for studies on
natural communities, not only for profiling taxonomic diver-
sity, but also for characterizing life stages, cell physiological
states, and ecological interactions in microbial eukaryotes.
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