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The origin of animal multicellularity has been linked to the 
spatial coexistence of cell types with distinct roles1,2. Cell 
type specialization is achieved through asymmetric access to 

genomic information, which is interpreted in a cell-specific fashion 
through mechanisms of transcriptional gene regulation. However, 
it remains unclear how elaborate genome regulation relates to cell 
type diversity. Poorly characterized, early-branching metazoans 
represent an opportunity to explore these questions by studying 
how cell-type-specific genome regulation is implemented in spe-
cies with (presumed) intermediate-to-low organismal complexity. 
Phylogenetically, sponges, comb jellies and placozoans—together 
with the remaining metazoans (Planulozoa)—are the earliest-
branching animal lineages3–6 (Fig. 1). These organisms possess 
characteristic body plans and have been traditionally considered 
to contain low numbers of cell types7, although our current under-
standing of this diversity of cell behaviours remains very limited. 
Moreover, these three lineages diverged over 650 million years 
ago (Ma)8, which has resulted in extremely different and special-
ized morphologies, life strategies and body plan organization9. 
Ctenophores are mostly pelagic, marine predators. They have 
tissue-level organization and they develop a nervous system of 
uncertain homology with their bilaterian counterparts10–12. By con-
trast, sponges are sessile filter-feeders that live both in marine and 
freshwater environments and that seem to have no or very rudi-
mentary specialized tissues13. Finally, placozoans are tiny benthic 
marine animals with a body plan organization that is composed of 
two cell layers. They possess ciliary-based locomotion and feed on 
algae using external digestion14. Sponges, ctenophores and placo-
zoans also vary considerably in their overall genome size, median 
intergenic space and repertoire of potential transcriptional and 
post-transcriptional regulators (Fig. 1). The genome of the sponge 

Amphimedon queenslandica measures 166 megabases (Mb), and its 
annotation suggests a relatively compact gene arrangement with 
very short (0.6-kilobase (kb)) intergenic regions15,16. In comparison, 
similar genome size (156 Mb) but longer (2 kb) intergenic regions 
are found in the ctenophore Mnemiopsis leidyi17. In the case of the 
placozoan Trichoplax adhaerens, a smaller genome (98 Mb) but 
longer intergenic regions (2.7 kb) are reported18. Annotation and 
comparison of the predicted proteome in these non-bilaterian spe-
cies uncovered an extensive suite of gene families shared across 
Metazoa15,17–19, suggesting the existence of ancient regulatory mech-
anisms for orchestrating cell type specification and maintenance. 
For example, sponge, ctenophore and placozoan genomes encode 
large repertoires of transcription factors (209–232) and chromatin 
modifiers and remodellers (99–134), representing intermediate 
diversity compared with unicellular species and other metazoans 
(for example, cnidarians or bilaterians) (Fig. 1). However, com-
parative analysis of genomic regulatory programmes in non-model 
organisms is confounded by the scarcity of direct molecular data on 
cell states and genome regulation. Whole-organism single-cell RNA 
sequencing (RNA-seq)20,21 opens an opportunity to start closing 
this gap, by performing extensive sampling of transcriptional pro-
grammes and characterizing cell type repertoires in diverse meta-
zoan lineages. Here, we generate transcriptional maps at single-cell 
resolution for A. queenslandica, M. leidyi and T. adhaerens. These 
maps, in combination with chromatin data and sequence analysis, 
allow us to survey the cell type diversity and compare the genomic 
regulatory programmes in these non-bilaterian animal lineages.

Results
An atlas of A. queenslandica adult and larval cell types. To study 
sponge cell type diversity, we collected adult and larval specimens 
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from A. queenslandica. We processed fresh cells using the mas-
sively parallel single-cell RNA-seq (MARS-seq) protocol with 
small adaptations22 (see Methods), profiling a total of 4,992 adult 
and 3,840 larval A. queenslandica cells (Supplementary Fig. 1 and 
Supplementary Table 1). Whole-organism single-cell analysis 
involves processing cells with highly heterogeneous RNA con-
tent, given the expected differences in size and/or transcriptional 
activity between distinct cell types (Supplementary Fig. 1a,b).  
To maximize the sensitivity of our assay, we retained for sub-
sequent analysis all sampled cells with at least 100 unique mol-
ecule identifiers (UMI). Applying the MetaCell framework 
(Supplementary Appendix 1), we found over 300 marker genes in 
each stage, which showed a high degree of intrapopulation tran-
scriptional variance (Supplementary Fig. 1c). Using this approach, 
even cells with overall low UMI counts were characterized by a 
sufficient number of marker genes (Supplementary Fig. 1d).  
This allowed us to robustly group 81–94% of our single cells 
into transcriptionally coherent clusters, which we call metacells 
(Supplementary Fig. 1e,f; see also Methods and Supplementary 
Appendix 1), and to apply a bootstrap approach to support these 
metacells (Supplementary Fig. 1g; see also Methods). Moreover, 
we associated each of the derived metacells with a set of differen-
tially expressed genes (Supplementary Tables 2 and 3) and used 
the functional annotation of these gene sets to annotate at least 
some of the metacells.

The power of whole-organism single-cell RNA-seq analy-
sis to characterize cell types is demonstrated by visualizing  
A. queenslandica adult metacells (Fig. 2a), key marker genes in 
two-dimensional (2D) projection (Fig. 1b) and a heat map showing 
the distribution of marker genes at single-cell resolution (Fig. 2c).  
The sponge transcriptional landscape is dominated by large 
groups of choanocytes, pinacocytes and archaeocytes13. Even 

though these groups can be further subdivided into subclasses, 
their annotation into broad types is supported by common tran-
scriptional signatures of key genes. Choanocytes are autonomous 
filter-feeding cells with a unique morphology, characterized by a 
flagellum surrounded by a microvilli collar23. Our data show that  
A. queenslandica choanocytes express RNA-binding proteins such 
as mbnl, bruno2 and nanos, as well as multiple proteins of the flagel-
lar apparatus, and annexins24 (Fig. 2b and Supplementary Fig. 2b,h).  
They also specifically express multiple adhesion proteins, includ-
ing cadherins and C-type lectins (Fig. 2b). Interestingly, not only 
choanocytes, but also other cell types we identified express unique 
combinations of adhesion proteins; for example, distinct integrin 
alpha/beta paralogue pairs (Supplementary Fig. 2a). These cell-
type-specific adhesion molecules, especially those like cadher-
ins and immunoglobulins that mediate homophilic interactions, 
are likely to be important in the spatial sorting of cell types and 
general sponge body plan organization. Finally, based on their 
expression, we can define two broad types of choanocytes (Fig. 2a) 
showing differences not only in their repertoire of effector genes 
but also in the expression of transcription factors.

Another abundant group of cells are pinacocytes (Fig. 2a,c). 
Pinacocytes are epidermal cells that cover the outer and inner sur-
faces of the sponge13. Our data show that A. queenslandica pina-
cocytes specifically express pumilio RNA-binding protein and 
multiple components of the actin contractility apparatus, includ-
ing tropomyosin, calponin and striated-type myosin II (Fig. 2b 
and Supplementary Fig. 2a). This suggests that A. queenslandica 
pinacoderm has some contractile properties, as also indicated by 
experiments in the demosponge Tethya wilhelma25. Interestingly, 
we also identify a cluster of cells that show intermediate transcrip-
tional profiles between choanocytes and pinacocytes, expressing 
both choanocyte markers, such as fgf and bruno2 and pinacocyte  
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markers, such as pumilio (Fig. 2b). In addition, these cells  
specifically express hedgling (Fig. 2b), a cadherin with an amino-
terminal hedgehog domain26,27. These data suggest the existence 

of transcriptional states representing trans-differentiation inter-
mediates between cell types, a process known to occur in multiple 
sponge species, including A. queenslandica13,28.
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Another major sponge cell behaviour identified here corresponds 
to archaeocytes, which are pluripotent amoeboid cells found in the 
sponge mesohyl (the gelatinous matrix that fills the sponge body)29. 
We find that these cells express specific extracellular matrix proteins 
(such as, fibrinogen), granulins and large amounts of diverse RNA-
binding proteins (such as, magonashi) (Fig. 2b and Supplementary 
Fig. 2b,c). The extensive usage of cell-type-specific RNA-binding 
proteins observed chiefly in archaeocytes, but also in other sponge 
cell types (Fig. 2b and Supplementary Fig. 2b), is in line with previ-
ous reports that suggest a pervasive role of this type of regulators in 
another sponge species, Ephydatia fluviatilis30. In addition to these 
abundant cell types, we detect in adult A. queenslandica remarkably 
distinct, yet much less abundant, cell types. These include sperm 
cells, defined by expression of tprv ion channel, theg and other genes 
associated with sperm function (Fig. 2b and Supplementary Fig. 2d),  
as well as collagen-producing cells (Fig. 1b), cells expressing mul-
tiple aspzincin protease paralogues (Fig. 2b and Supplementary 
Fig. 2e) and host defence cells producing antibacterial proteins 
(Supplementary Fig. 2f).

Unlike the other species included in this study, but similar to 
many marine invertebrates31, A. queenslandica has a biphasic life 

cycle involving two dramatically different post-embryonic stages: 
adult and larva32. We therefore profiled single-cell transcriptomes 
in the lecitotrophic larva of A. queenslandica to identify larval cell 
types and compare them with those found in adult sponges. We 
sampled the transcriptomes of 3,840 larval single cells and identi-
fied metacells with specific expression signatures using the same 
strategy described for the adult (Fig. 2d,e and Supplementary 
Table 2). This analysis revealed at least seven different cell types 
in the larva (Fig. 2d,e). Based on published expression patterns for 
marker genes, we could identify some of these cell types. These 
include ciliated epithelial cells that express ciliary markers (Fig. 2e),  
flask cells33, wnt-expressing posterior pole cells34 and tgfb-
expressing anterior pole cells34. When comparing transcriptional 
signatures, larval cell types show remarkable differences com-
pared with adult cell types: 4.8% of the genes expressed in the 
larva (689/14,426) are not expressed in the adult and, recipro-
cally, 39.9% (9,010/22,567) of adult genes are not expressed in 
the larva. Direct metacell comparisons (Fig. 2g) show that, in 
fact, only one larval cell type shows strong similarity with an 
adult cell type: archaeocytes. Overall, this indicates that the  
A. queenslandica larval stage deploys a unique set of cell 
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(sorted based on the clustering of A. queenslandica genes; top triangle). Bottom: reciprocal analysis, focusing on M. leidyi gene modules (top triangle) and 
showing the equivalent correlations for A. queenslandica orthologues (bottom triangle). Correlation values were computed based on expression profiles 
across metacells, and genes are hierarchically clustered based on these correlations in the species of focus. Conserved gene modules are highlighted with 
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behaviours with no counterparts in the cell types that emerge 
after the larva metamorphoses into an adult28.

M. leidyi cell type diversity. Ctenophores were traditionally 
considered to be a sister group to cnidarians35. However, recent 
phylogenomics studies clearly show they are one of the earliest-
branching animal lineages, although it remains disputed whether 
they branched before or after sponges3–6 (Fig. 1). Ctenophores have 
a complex body plan and cell types such as muscles and neurons. 
These features, together with the ctenophore phylogenetic position, 
open the question of whether neurons and other cell types have 
single or multiple origins within Metazoa11,12,17,36. We mapped the 
diversity of cell types in the ctenophore M. leidyi by profiling 6,144 
single-cell transcriptomes. Compared with the sponge, mapping of 
the ctenophore M. leidyi transcriptional states uncovered a richer 
repertoire of cell types, some of which could be associated with puta-
tive functions and known cell types (Fig. 3a–c, Supplementary Fig. 
3 and Supplementary Table 4). For example, we identified a group 
of photocyte cells (the cells responsible for ctenophore biolumi-
nescence) expressing known photoproteins and opsins37 (Fig. 3b).  
Unlike most other metazoans, ctenophore locomotion is based on 
the coordinated ciliary beating of rows of comb cells. We identified 
comb cells expressing multiple ciliary markers and specific potas-
sium voltage-gated and amiloride-sensitive sodium ion channels 
(Fig. 3e and Supplementary Fig. 3). Comb cells also express a spe-
cific innexin gene (Fig. 3e), supporting the existence of gap junc-
tions electrically coupling these groups of cells, as suggested by 
ultrastructural observations38. Another group of cells show expres-
sion of markers associated with muscle cell types in other species39, 
such as tropomyosin and myosin light chain (Fig. 3b). Interestingly, 
although M. leidyi lacks striated muscles, we can distinguish a group 
of muscle cells expressing markers associated with striated muscles 
in other species39, such as striated-type myosin II, while another 
group of muscle cells express markers of ‘smooth’ muscles, such as 
calponin (Fig. 3b and Supplementary Fig. 3a). We also detect cells 
showing expression of digestive enzymes and genes associated 
with the formation of microvilli and filopodia40 (such as diapha-
nous and cortactin) (Fig. 3b), a group of cells expressing a secreted 
Shk-domain protein41 (Fig. 3b), and epithelial cells expressing mul-
tiple transmembrane adhesion and extracellular matrix proteins 
(Supplementary Fig. 3b).

However, most of the cell clusters we identified cannot be assigned 
to known functions/types and many are strongly associated with 
unannotated proteins (Supplementary Table 3), often Ctenophora-
specific (see Fig. 4e). This emphasizes our still very limited under-
standing of ctenophore biology9. Interestingly, we could not identify 
any metacell with distinct neuronal gene expression signatures such 
as those observed in cnidarians and bilaterians36. For example, dif-
ferent synaptic scaffold components are expressed across multiple 
cell types and no specific cell cluster shows co-expression of many 
voltage-gated ion channels. This lack of co-expression is similar 
to that observed for synaptic scaffold and other neuronal genes in  
A. queenslandica and T. adherens (see below)—two organisms 
without neuronal cells. Instead, we find in M. leidyi highly specific 
expression in multiple metacells of electrical synapse components 
(innexins), as well as specific expression of ASC, iGluR and Kv/Cav/
Nav ion channels12,17 (Fig. 3b and Supplementary Fig. 3c–h). Overall, 
these findings indicate a dramatically different molecular compo-
sition of ctenophore synapses and neuronal-like cells from those 
of cnidarians and bilaterians, possibly suggesting convergence of  
these cell types12,42.

T. adhaerens cell type diversity. Placozoans are the simplest (non-
parasitic) multicellular animals. They have no apparent body axis 
or tissue-level organization and they differentiate only six cell types 
according to ultrastructural studies14,43. These cells are organized 

in two ciliated epithelial layers and the flattened body is filled with 
extracellular matrix material and fibre cells. We dissociated and 
sampled the transcriptomes of 4,608 T. adhaerens cells (Fig. 3d–f, 
Supplementary Fig. 4 and Supplementary Table 5) and defined 
metacells and putative cell types using the same strategy as for  
A. queenslandica and M. leidyi. In line with the known biology and 
ultrastructure of T. adhaerens43, we defined groups of fibre cells, 
lipophil cells, digestive and gland cells, and epithelial cells, compris-
ing in total 79% of the sampled cells. Fibre cells express markers 
associated with cell contractility, such as tropomyosin and calponin 
(Fig. 3e and Supplementary Fig. 4g), as well as cell adhesion and 
extracellular matrix proteins such as integrins, collagens and fibro-
nectins (Fig. 3e and Supplementary Fig. 4c,g). This suggests a dual 
role of these cells in generating the extracellular material that fills 
the body of T. adhaerens, as well as enabling the body contraction 
involved, for example, in placozoan feeding behaviour. Lipophil 
cells express multiple lysosome and lipid metabolism genes (Fig. 3e 
and Supplementary Fig. 4d), gland cells express different digestive 
enzymes such as trypsins (Fig. 3e and Supplementary Fig. 4h), and 
epithelial cells express multiple defensins—short peptides involved 
in host defence44 (Fig. 3e and Supplementary Fig. 4e). Both gland and 
epithelial cells express ciliary markers (Fig. 3e and Supplementary 
Fig. 4f), as expected given that they are both ciliated cell types43.

Besides these four abundant cell behaviours, our analysis reveals 
seven additional lower-frequency cell types, six of which are char-
acterized by the production of unique regulatory peptides45,46 and 
multiple specific transcription factors (Figs. 3e,5f). One of these 
regulatory peptides (TaELP; Fig. 3e) has recently been shown to 
regulate T. adhaerens locomotion through control of ciliary beating 
of the cells in the lower epithelial layer45. Therefore, we hypothesize 
that the five other peptidergic cell types uncovered in this study 
may be involved in the control of additional processes, such as the 
release of digestive enzymes from gland cells or the contraction of 
fibre cells. However, although the T. adhaerens genome encodes 
multiple genes involved in synaptic and neuronal functions18, these 
genes do not show co-expression in these peptidergic cell types 
(Supplementary Fig. 4b), indicating the absence of a synaptic scaf-
fold or any other neuronal gene module. Overall, the observed states 
indicate that elaborated peptidic regulation occurs in this simple 
animal within specialized cell types that lack the characteristics  
of synaptic neurons45.

Phylogenetic patterns of cell-type-specific gene repertoires. To 
study the evolutionary dynamics of these cell-type-specific tran-
scriptional programmes, we used phylogenetic mapping to define 
gene ages and orthology relationships in A. queenslandica, M. leidyi 
and T. adhaerens (Supplementary Table 6). First, we analysed the 
possible cross-species conservation of cell-type-specific expression 
correlation over orthologous gene pairs. This showed that, at the 
evolutionary distances separating these three species from their 
common ancestor (>​635 Ma8), co-regulation of genes is almost 
completely divergent (Fig. 4a–c). In fact, we only observed con-
served co-regulation of specific housekeeping functions, including 
ribosomal proteins and flagellar apparatus.

Next, we analysed how gene age correlates with cell type tran-
scriptional specificity (Fig. 4d–k). We defined for each gene in 
each species an inferred evolutionary origin based on the presence 
of orthologues in species belonging to key taxonomic groups4,12,47 
(Fig. 4d and Supplementary Table 6). The global age distribution 
among expressed genes varied substantially across species (Fig. 4e). 
In A. queenslandica, most expressed genes are of eukaryotic origin 
(36%), followed by genes originated at the stem of Metazoa (23%) 
and A. queenslandica-specific genes (24%). In T. adhaerens, paneu-
karyotic genes are even more dominant, representing over 50% of 
all expressed genes, and a similar percentage of the genes that are 
expressed in a cell-specific manner; while there is only a modest 
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Fig. 6 | Regulatory sequence analysis in A. queenslandica, M. leidyi and T. adhaerens. a, De novo motif enrichments in A. queenslandica promoters. Left: 
heat map showing significant (FDR <​ 0.02) motif (rows) enrichments in the promoters of metacell-specific gene sets (columns). Right: heat map showing 
the similarity of each A. queenslandica promoter-enriched motif (rows) to known motifs in databases (columns). The coloured bar indicates whether the 
motif has high similarity (>​0.7) with any known motifs and/or de novo motifs found in the other two species. b,c, Same as a, but for M. leidyi (b) and  
T. adhaerens (c). d, Boxplots showing, for each species, the frequency of occurrence of metacell-specific motifs in the promoters of metacell-specific genes 
compared with all other gene promoters (left) and compared with the whole genome (right). **P <​ 0.0001, *P <​ 0.05, NS, not significant (Wilcoxon rank-
sum test). e, Boxplot showing, for each species, the distribution of de novo motif entropies. **P <​ 0.0001, *P <​ 0.05 (Wilcoxon rank-sum test).  
f, Scatterplots for A. queenslandica (left), M. leidyi (middle) and T. adhaerens (right), showing the maximum similarity of each de novo motif to known 
motifs (x axis) and motifs in the other two species (y axis). The highlighted cases (top) show examples of motifs that are highly similar between two 
species and not similar to any known motif in databases. g, Left: correlation between observed (obs.) and predicted (pred.) expression values derived from 
a linear model based on promoter motif content analysis for the T. adhaerens metacell 42 (peptidergic cells). Correlation is shown as a function of the total 
molecule count threshold applied to the genes considered in the analysis. The three motifs with the top coefficients according to the model are shown. 
Right: receiver operating characteristic curve of the linear regression model predicting gene expression in metacell 42 (peptidergic cells). h, Same as g, but 
for A. queenslandica metacell 32 (archaeocytes). i, Pie charts for M. leidyi (left) and T. adhaerens (right) showing the distribution of H3K4me2 peaks across 
different genomic features, grouped by overlap or lack of overlap with H3K4me3 peaks. H3K4me3 +​ K4me2 peaks in non-promoter regions are likely to 
represent unannotated promoter sites. Numbers indicate the percentage for each category. j, iChIP signal metaplots centred in promoter peak maximum 
coverage positions for H3K4me3 (left) and H3K4me2 (right) and in T. adhaerens (top) and M. leidyi (bottom). ChIP signal is indicated as –log2(1 – coverage 
quantile), see Methods. k, Fraction of H3K4me2/3 peaks observed in promoter regions in M. leidyi (left) and T. adhaerens (right). **P <​ 0.0001, NS, not 
significant (χ2 test). l, Example T. adhaerens (top) and M. leidyi (bottom) genomic regions showing normalized H3K4me2 and H3K4me3 iChIP coverage.  
m, M. leidyi H3K4me2/3 iChIP signal metaplots centred at enhancer element maximum H3K4me2 positions. n, De novo motif enriched in  
M. leidyi enhancers. The bar plot shows the frequency of occurrence of this motif in M. leidyi enhancers and promoters.
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contribution of genes specific to T. adherens (17%) in the cell-type-
specific transcriptomes. By contrast with A. queenslandica and  
T. adherens, in the ctenophore M. leidyi, most cell-type-specific 
genes are of ctenophore origin (40%). This suggests an important 
contribution of ctenophore gene innovations to ctenophore cell type 
biology9 and also explains the difficulty of determining the identity 
of many of the cell clusters we identified in this species (Fig. 3a–c).

In general, genes that are expressed broadly across tissues have 
been shown to have older phylogenetic origins, while genes expressed 
in a narrower subset of tissues tend to have more recent phyloge-
netic origins48,49. To test whether the same effect is observed in cell 
type transcriptomes, we defined for each gene a cell type specificity 
score (based on the maximum fold change in expression observed 
in any metacell) and stratified these values according to gene age 
(Fig. 4f,g). In all three species, we observed that evolutionarily more 
novel genes show a significantly higher degree of cell-type-specific 
regulation. At a higher resolution, specific cell clusters show distinct 
gene-age distributions (Fig. 4i–k). For example, sponge choanocytes 
are particularly enriched in genes specific to the sponge lineage, 
whereas, archaeocytes and sperm cells are enriched in paneukary-
otic genes (Fig. 4i). In the ctenophore, digestive cells are enriched 
in genes of holozoan origin (that is, shared between animals and 
their closest unicellular relatives), while epithelial cells and multiple 
uncharacterized cell types are enriched in ctenophore genes (Fig. 4j).  
A similar pattern is observed in the placozoan T. adherens, with 
epithelial cells being enriched in lineage-specific genes, while lipo-
phil cells are enriched in paneukaryotic genes and digestive cells are 
enriched in genes shared between placozoans, cnidarian and bilat-
erians (ParaHoxozoa) (Fig. 4k).

Cell-type-specific transcription factor modules. Transcription 
factors are key players in the gene regulatory networks that define 
cell type identity50. We examined transcription factor cell-type-
specific expression to test whether the observed cell type tran-
scriptional programmes are linked to a rich transcription factor 
repertoire. We detected expression for 168, 231 and 129 predicted 
transcription factors in A. queenslandica, M. leidyi and T. adhaerens, 
respectively (Fig. 5a and Supplementary Fig. 5a). The classification 
of predicted transcription factors into structural classes suggested 
expanded usage of homeobox and zf-C2H2 transcription factors in 
the ctenophore, but otherwise similar representation of transcrip-
tion factor classes between these species (Fig. 5b). Consistent with 
their probable role as key drivers of cell type regulation, we found 
that transcription factors are much more likely to be expressed in a 
cell-type-specific fashion compared with all other genes (Fig. 5c).  
Accordingly, we found different transcription factors being spe-
cifically expressed in all cell types in each of the species. In  
A. queenslandica, we observed maf, grainyhead and 27 other tran-
scription factors enriched in choanocytes; ets and arx homeobox are 
specific to pinacocytes; and Mycmyc is expressed in archaeocytes 
(Fig. 5d and Supplementary Fig. 5b,c). Less frequent sponge cell 
types also show highly specific transcription factor expression. For 
example, sperm cells show co-expression of four tbx6/7 paralogues, 
and host defence cells express interferon regulatory factor (Fig. 5d 
and Supplementary Fig. 5b,c). In M. leidyi, grainyhead transcrip-
tion factor is enriched in epithelial cells and rfx4 is enriched in the 
ciliated comb cells (Fig. 5e and Supplementary Fig. 6a). These tran-
scription factors have been shown in other species to be expressed 
in epithelial cells and ciliated cells, respectively51,52, suggesting con-
served association of these transcription factors with epithelial and 
ciliary programmes. Examples of cell-type-specific transcription 
factor regulators in T. adhaerens include noto homeobox in lipo-
hil cells and foxC in fibre cells (Fig. 5f and Supplementary Fig. 6b). 
Interestingly, while an overall similar number of transcription fac-
tors are expressed in a cell-type-specific fashion across the three 
species (Fig. 2a), in the ctenophore, the higher cell type complexity 

results in a smaller number of transcription factors linked to each 
transcriptional state, suggesting that additional epigenetic mecha-
nisms might be involved in cell type specification for this species; 
for example, genomic compartmentalization and combinatorial 
gene regulation by distal regulatory elements. In summary, elabo-
rated combinatorial expression of transcription factors is observed 
to correlate—and possibly drive—differentiated transcriptional 
programmes in sponges, ctenophores and placozoans.

Genomic embedding of cell type regulatory programmes in 
early metazoans. Transcription factors regulate their target genes 
by binding to sequence elements located at promoters and, most 
prominently in bilaterians, at distal enhancers. To reconstruct the 
degree to which information encoded into gene promoters can 
direct cell-type-specific transcriptional control in early metazoans, 
we defined sets of cell-type-specific gene modules for each species 
(Supplementary Tables 2–5). We then searched de novo for enriched 
sequence motifs in predicted gene promoters (−​200 and +​50 base 
pairs (bp) from the transcription start site (TSS)), controlling for false 
discovery rate and validating motif robustness by analysis of spa-
tial motif distributions (Supplementary Fig. 7a) and shifted control 
sequences (Supplementary Fig. 7b). In A. queenslandica, we selected 
325 motifs for downstream analysis (Supplementary Table 7),  
computed promoter affinity to each motif and visualized the distri-
bution of motif enrichments for each cell-type-specific gene module 
(Fig. 6a). This resulted in remarkably rich landscapes of promoter 
motif content, covering all inferred cell types with 16–96 distinct 
motifs. For example, we observed 93 distinct motifs enriched in 
choanocyte gene promoters, consistent with the exceptionally rich 
combination of 29 transcription factors associated with choano-
cyte-specific expression (Fig. 5d and Supplementary Fig. 5b,c).  
Similar analysis in M. leidyi (Fig. 6b; 6–82 motifs per cell type) 
and T. adhaerens (Fig. 6c; 29–98 motifs per cell type) confirmed 
that promoter motifs are significantly enriched in these organ-
isms as well. However, comparative analysis of the degree of motif 
genomic specificity (Fig. 6d) and entropy (Fig. 6e) suggested that, 
in the ctenophore M. leidyi, the strength of promoter motifs and 
their specificity to target genes given multiple potential genomic 
off-targets is significantly weaker compared with A. queenslandica 
and T. adhaerens.

Our de novo discovery approach is a priori not restricted to the 
identification of known transcription factor binding motifs char-
acterized in model species. Nevertheless, we found that 33% of  
A. queenslandica, 25% of M. leidyi and 32% of T. adhaerens motifs 
matched (similarity >​0.7) known models retrieved from databases 
covering transcription factor motifs for multiple eukaryotic species 
(Fig. 6a–c and Supplementary Fig. 7f). This indicates that at least 
some of the sequence elements defining the transcription-factor–
genome interface are deeply evolutionarily conserved. Remarkably, 
out of the 570 novel motifs that could not be matched in databases, 
we detected 53 conserved between at least two species (Fig. 6f and 
Supplementary Fig. 7g). Discovering novel motifs independently in 
highly diverged species serves as further validation of the robust-
ness of the promoter signals we characterize and indicates that 
comprehensive characterization of the repertoire of possible tran-
scription-factor–DNA interfaces in metazoan genomes will require 
further analysis of phylogenetically diverse species.

Analysis of promoter information content by predictive expres-
sion models. In multicellular animals, stable differentiated tran-
scriptional programmes are defined by multiple cis-regulatory 
modules, long-range control and powerful epigenetic mecha-
nisms53. By contrast, in most unicellular eukaryotes, gene regula-
tion involves exclusively regulatory elements that are proximal to 
the gene promoter54. Hence, we were surprised by the high degree 
of proximal promoter information content in A. queenslandica and 
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T. adhaerens. To further quantify this information content in cell-
type-specific promoters, we implemented a simple model aiming to 
predict cell-type-specific expression from promoter sequences alone 
(see Methods). We tested the model by training on subsets of the 
genes and then predicting cell-type-specific gene expression from 
hidden promoter sequences. We found that this simple approach 
generated substantial predictive value in multiple A. queenslandica 
and T. adhaerens metacells (Fig. 6g,h and Supplementary Fig. 7c–e), 
despite the clear limitations of predicting combinatorial regula-
tion using linear models. Accuracy improved as the total number 
of RNA molecules captured for a gene increased (Fig. 6g,h and 
Supplementary Fig. 7c–e), indicating that some of the inaccuracy 
of our predictions stems from experimental noise in the estimation 
of differential expression. For example, using promoter sequences 
alone, we could predict 50% of the A. queenslandica metacell 
32 gene expression with 90% specificity (area under the curve 
(AUC) =​ 0.76) and 50% of the T. adhaerens metacell 42 gene expres-
sion with 84% specificity (AUC =​ 0.77). Interestingly, predictions 
based on promoter sequence were less powerful in the ctenophore 
(Supplementary Fig. 7d), suggesting an important contribution of 
additional, perhaps distal, regulatory elements in this group.

Characterizing distal epigenetically marked loci in M. leidyi. To 
test the potential contribution of long-range regulatory elements 
in M. leidyi and, as a control, T. adhaerens, we used indexing-first 
chromatin immunoprecipitation (iChIP)55 in these two species. 
We profiled chromatin extracted from whole organisms with anti-
bodies against histone modifications associated with promoter 
(H3K4me2/3) and enhancer (H3K4me2-only) activities. We found 
that whole-organism iChIP was sufficiently sensitive to detect 
H3K4me2/3 enrichment in 45% of M. leidyi and 66% of T. adhaerens 
promoters (Fig. 6i), showing quantitatively stronger enrichment 
for promoters that were expressed in a larger fraction of the cells 
(Supplementary Fig. 8a,b). Spatial analysis showed that H3K4me3 
and H3K4me2 are localized around annotated promoters at a dis-
tance scale of less than 500 bp in both species (Fig. 6j). Interestingly, 
we found that while in T. adhaerens the fraction of H3K4me2 and 
H3K4me3 peaks mapping in promoter regions is the same (Fig. 6k),  
a significant fraction of H3K4me2 in M. leidyi does not co-localize 
with H3K4me3 in promoters, suggesting the existence of non-pro-
moter distal regulatory elements55. Examples of epigenomic profiles 
(Fig. 6l and Supplementary Fig. 8c,d) and spatial mapping around 
distal H3K4me2 in the ctenophore (Fig. 6m) both support the exis-
tence of a distinct class of distal epigenetically marked loci in this 
species. Furthermore, sequence analysis revealed that these loci are 
20-fold enriched for a specific GCGC-rich motif compared with pro-
moters (fivefold compared with the genomic background) (Fig. 6n  
and Supplementary Fig. 8e,f). The strong chromatin signature we  
observe in whole-organism iChIP for this class of distal elements 
and the strong sequence specificity observed within it suggest that 
this class represents some constitutively active genomic-structural 
elements. Such elements may be hypothesized to perform functions 
that are similar to the role of CTCF in vertebrates56 or Beaf-32 in 
Drosophila melanogaster57,58. In summary, we discovered the exis-
tence of distal elements of M. leidyi with strong sequence specificity 
and a potential role as enhancers and/or chromosomal organizers. 
Similar analysis could not detect any evidence for distal regulatory 
elements in T. adhaerens.

Discussion
Using whole-organism single-cell RNA-seq and a combination 
of sequence and chromatin analysis, we mapped differentiated 
transcriptional states and linked them with putative cell types in 
three representatives of the earliest-branching animal lineages. 
The unbiased approach we employed provides the first systematic 
insight into early animal cell type regulatory programmes, revealing  

distinct cell type repertoires in adult and larval sponges, a surpris-
ingly high diversity of cell types in M. leidyi, and the existence of 
multiple specialized peptidergic cell types in T. adhaerens. A com-
bination of these cell type transcriptional atlases with chromatin 
and sequence analyses indicates the existence of some key differ-
ences between sponge, placozoan and ctenophore cell-type-specific 
transcriptional control schemes. On the one hand, A. queenslandica 
and T. adhaerens have fewer cell types and show remarkably specific 
promoter sequence motifs. Moreover, T. adhaerens shows no evi-
dence of regulation by distal enhancer elements. On the other hand, 
M. leidyi has higher cell type diversity, expresses fewer specific tran-
scription factors per cell type, and shows lower information content 
in gene promoters. Moreover, M. leidyi shows strong evidence for 
distal regulatory elements. We suggest that the ctenophore mecha-
nistic solution for defining and stabilizing cell type programmes 
might be more similar to the bilaterian solution, employing multiple 
layers of control to supplement the transcription factor combinator-
ics. We hypothesize that this elaborate regulation might be neces-
sary to specify large repertoires of cell types embedded in a complex 
body plan such as that of ctenophores. By contrast, placozoans 
demonstrate the feasibility of defining and regulating multiple cell 
types without such strong layered architecture, but simply using a 
combination of transcription factors and proximal promoter regula-
tory elements, similarly to what is observed in unicellular eukary-
otes and unlike the animal species studied to date. We expect the 
methodology we introduce here will facilitate multiple studies for 
mapping cell type regulation in diverse species in the coming years, 
resulting in increasingly dense phylogenetic coverage of cellular 
behaviours across the animal tree of life. The integrative analysis of 
this data will further allow a comprehensive and principled analysis 
of the evolutionary mechanisms leading to animal multicellularity 
and the genomic determinants of multifaceted transcriptional con-
trol schemes.

Methods
Animal sources, specimen dissociation and cell sorting. A. queenslandica adults 
and larvae were collected from Heron Island Reef, Great Barrier Reef, Queensland, 
Australia. Adult specimens were dissociated by placing them in a syringe and 
squeezing them through a 60 μ​m nylon mesh (fused to the end of the syringe) into 
calcium/magnesium-free seawater (CMFSW). Larvae were dissociated by gentle 
pipetting with gelatin-coated tips.

M. leidyi adults originated from L. Friis-Møller, Kristineberg, Sweden. They 
were maintained in the laboratory in filtered seawater, with small adult specimens 
(~20 mm) used for dissociation. Specimens were starved for 2–3 days, with 
daily changes of seawater. They were relaxed briefly in 7% magnesium chloride, 
then rinsed twice in CMFSW. For dissociation, they were incubated in 0.25% 
chymotrypsin (MP Biomedicals) in CMFSW for 20 min at room temperature with 
constant rocking and gentle pipetting. Cells were collected by centrifugation for 
10 min at 1,000 g at 16 ºC.

T. adhaerens (Grell strain59) was cultured in the laboratory at room temperature 
using artificial seawater (ASW) and feeding them with the cryptophyte algae 
Pyrenomonas helgolandii (strain SAG 28.87). Algae were obtained from the 
University of Gottingen algae culture collection (SAG), and cultured at room 
temperature in 250 ml flasks using PROV50 medium (#MKPROV50L; NCMA) 
and a long-wavelength fluorescent lamp. For dissociation, 30–40 animals 
were first transferred to a small plastic dish and, after they attached, cleaned 
three times with ASW. Then, ASW was replaced by CMFSW plus 10 mM 
ethylenediaminetetraacetic acid (EDTA) and the animals were dissociated by 
gentle pipetting with gelatin-coated tips.

In all cases, cells were distributed into 384-well capture plates (all coming from 
the same production batch) containing 2 μ​l of lysis solution using a FACSARIA 
III cell sorter. The lysis solution contained 0.2% Triton and RNAse inhibitors plus 
barcoded poly(T) reverse-transcription primers for single-cell RNA-seq. Non-
cellular particles were discriminated by selecting only DRAQ5-positive cells (25 μ​M  
DRAQ5 staining; Thermo #62251), and cell doublet/multiplet exclusion was 
performed using forward scatter width (FSC-W) versus forward scatter height 
(FSC-H). Fresh cell dissociates were prepared every 2 h, and sorted plates were 
immediately spun down to ensure cell immersion into the lysis solution, then 
frozen at –80 °C until further processing.

MARS-seq. Single-cell libraries were prepared as previously described22. For each 
species, all single-cell libraries were prepared in parallel: 8,832 libraries for  
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A. queenslandica (13 plates for adult sponges and 10 for larvae), 6,144 for M. leidyi 
(16 plates) and 4,224 for T. adhaerens (12 plates). That is, we employed exactly 
the same conditions (incubation times, temperatures and so on) and reagents in 
order to minimize technical factors. First, using a Bravo automated liquid handling 
platform (Agilent), messenger RNA was converted into complimentary DNA with 
an oligo containing both the UMIs and cell barcodes. Unused oligonucleotides 
were removed by Exonuclease I treatment. Complimentary DNA was pooled 
(each pool representing half of the original 384-well MARS-seq plate) and linearly 
amplified using T7 in vitro transcription, and the resulting RNA was fragmented 
and ligated to an oligo containing the pool barcode and Illumina sequences, using 
T4 single stranded DNA:RNA ligase. Finally, RNA was reverse transcribed into 
DNA and amplified by polymerase chain reaction (PCR). Resulting libraries were 
tested for amplification using quantitative PCR, and the size distribution and 
concentration were calculated using TapeStation (Agilent) and Qubit (Invitrogen). 
For each species, all single-cell RNA-seq libraries were pooled at equimolar 
concentrations and sequenced to saturation (≥​4 reads per UMI) using an Illumina 
NextSeq 500 sequencer and mid-output 75 cycles V2 kit (Illumina). For adult  
A. queenslandica, we obtained a total of 430 million reads, with an average depth 
of 53,000 reads per cell, and 6 reads per UMI on average (Supplementary Table 1). 
For A. queenslandica larvae, we obtained a total of 67 million reads, with an average 
depth of 11,000 reads per cell, and 5 reads per UMI on average. For M. leidyi, we 
obtained a total of 506 million reads, with an average depth of 36,000 reads per cell, 
and 5 reads per UMI on average. In the case of T. adhaerens, we obtained a total 
of 85 million reads, with an average depth of 14,000 reads per cell, and 7 reads per 
UMI on average.

Processing and filtering of MARS-seq reads. Reads were mapped into  
A. queenslandica, T. adhaerens and M. leidyi genomes using Bowtie2 (with the 
parameters -D 200 -R 3 -N 1 -L 20 -i S,1,0.50) and associated with gene intervals. 
For each species, we extended gene intervals up to 2 kb downstream or until the 
next gene in the same strand was found. This accounts for the poor 3′​ untranslated 
region annotation of these species, which causes many of the MARS-seq (a 3′​ 
biased RNA-seq method) reads to map outside genes. Additionally, to account 
for putative unannotated genes, we defined 500-bp bins (not covered by our gene 
intervals) genome-wide. We retained those with ≥​10 uniquely mapping reads and 
used them in the cell clustering process (see below).

Mapped reads were further processed and filtered as previously described22. 
UMI filtering included two components—one eliminating spurious UMIs resulting 
from synthesis and sequencing errors, and the other eliminating artefacts involving 
unlikely in vitro transcription (IVT) product distributions that were probably a 
consequence of second-strand synthesis or IVT errors. The minim false discovery 
rate (FDR) Q value required for filtering was 0.2.

Metacell and clustering analysis. We used the MetaCell package (Supplementary 
Appendix 1) to select gene features, construct gene modules and create projected 
visualization of the data, using parameters as described below. We applied 
preliminary cell filtering based on total UMI counts using a permissive threshold 
of 100 UMIs (50 UMIs in the case of A. queenslandica larva, to account for the very 
different molecule count distributions in this sample). For gene selection, we used a 
normalized depth scaling correlation threshold of −​0.1 (−​0.05 in A. queenslandica 
larva and T. adhaerens) and a total UMI count of more than 100 molecules (the 
empirical median marker UMI count was 2,723 for the sponge, 1,013 for the 
ctenophore and 1,075 for the placozoan). For metacell construction, we used 
K =​ 150, a minimum module size of 30 and automatic filtering of background noise 
using an initial epsilon value of 0.03. Bootstrapping was performed using 1,000 
iterations of resampling 75% of the cells, leading to an estimation of co-clustering 
between all pairs of single cells and the identification of robust clusters based on 
single or grouped metacells. For 2D projections, in the A. queenslandica adult 
dataset, we used a k-nearest neighbours constant of 50 and restricted the module 
graph degree by at most 10 (A. queenslandica larva, k =​ 30/max degree =​ 3;  
M. leidyi, k =​ 30/max degree =​ 7; T. adhaerens, k =​ 30/max degree =​ 8).

We performed manual validation and adjustment of the automatic module 
covers in Fig. 1 and Supplementary Fig. 4 as follows. We filtered metacells that were 
not enriched by at least three genes at over threefold over the median of the entire 
populations. Additionally, module-specific transcriptional enrichment was tested 
for each metacell by identifying a set of module-specific genes (top 50 genes with 
a fold change of ≥​2) and computing the top 1% of their total expression across all 
non-module cells (also excluding cells in the two most similar modules). Given this 
top percentile as a threshold, the fraction of cells in the module that expressed the 
module’s genes over the threshold was computed, and additional module filtering 
was applied if this value was lower than 30%. We also filtered out metacells with 
fewer than 10,000 total molecules. We note that cells that were filtered during this 
combined scheme may be part of additional undetected states, or may represent 
a weaker signal that is, in fact, part of other, more robust modules, but for our 
goals in the analysis here, robustness of the reported transcriptional states and the 
subsequent genomic analyses was key. Overall, this resulted in filtering 862 cells in 
the sponge, 785 cells in the ctenophore and 188 cells in the placozoan. Finally, we 
merged metacells with >​20% of shared cells co-clustering in our 1,000 bootstrap 
replicates, resulting in the metacells presented in Figs. 2 and 3 and supported by 
bootstrap analysis in Supplementary Fig. 1.

iChIP. For the iChIP experiments, M. leidyi and T. adhaerens cells (dissociated 
as described above) were cross-linked in 1% formaldehyde for 10 min at room 
temperature. Cross-linking was quenched with 0.125 M glycine for 5 min at room 
temperature. Cross-linked cells were pelleted and stored at –80 ºC. Chromatin 
was sonicated in a Bioruptor sonicator (Diagenode), distributing 1 M cells per 
100 μ​l tube and using 45 sonication cycles (30” ON/30” OFF; High mode). Then, 
chromatin was immobilized onto anti-H3 antibody (#ab1791; Abcam)-coated 
Protein G Beads (Invitrogen). After 3 washes with 10 mM Tris pH8 plus protease 
inhibitors, immobilized chromatin was indexed with Illumina Y-shaped adaptors 
as described in ref. 55. After barcoding, indexed chromatin was pooled and released 
from Ab-ProtG bead immunocomplexes by incubating for 30 min at 37 ºC in a 
buffer containing 50 mM EDTA, 2% SDS, 2% deoxycholic acid and 1 M NaCl. 
After the incubation, the chromatin was separated from the magnetic beads using 
a magnet and the released indexed chromatin was transferred to another tube and 
diluted 1 to 20 in a buffer of 10 mM Tris-Cl, 10 mM NaCl and 1 mM EDTA. A 
small fraction of this dilution (60 μ​l) was separated to be sequenced as input. The 
remaining diluted indexed chromatin (approximately 10 ml) was concentrated to 
200 μ​l using a 50 kDa centricon (Ambion), and the volume was brought to 400 μ​l  
with radioimmunoprecipitation assay (RIPA) buffer plus protease inhibitors. The 
400 μ​l pool was divided into 2 to perform 2 ChIP assays—1 for H3K4me2 and 
another for H3K4me3. The specific ChIP reaction was carried out at this stage 
by incubating the 200 μ​l extract of the indexed chromatin pool with 4 μ​l of anti-
H3K4me2 antibody (#ab3236; Abcam) or 2.5 μ​l of anti-H3K4me3 antibody (#07-
473; Millipore) at 4 ºC with rotation. After 10 h of incubation, 40 μ​l of pre-washed 
ProtG beads was added and incubated for 1 h to capture the antibody–chromatin 
complexes. Immunocomplexes were then washed 5 times with RIPA (150 mM 
NaCl, 0.1% SDS, 0.1% deoxycholate, 1% Tx-100 and 1 mM EDTA), twice with 
RIPA-500 (500 mM NaCl, 0.1% SDS, 0.1% deoxycholate, 1% Tx-100 and 1 mM 
EDTA), twice with LiCl buffer (250 mM LiCl, 0.5% NP-40, 0.5% deoxycholate and 
1 mM EDTA) and twice with TE buffer, and resuspended in 50 μ​l of Chromatin 
Elution Buffer (0.4% SDS, 250 mM NaCl, 5 mM EDTA and 10 mM Tris-Cl pH 8) 
plus 2.5 μ​l of Proteinase K (NEB) and incubated for 2 h at 37 ºC and 6 h at 65 ºC. 
ChIPped DNA was purified with AMPure beads with a ratio of 2.5×​ and eluted in 
23 μ​l of Elution Buffer (10 mM Tris pH8). To amplify the ChIPped barcoded DNA, 
12 cycles of PCR were performed using 25 μ​l of 2×​ KAPA HiFi Master Mix and 2 μ​l  
of primer master mix.

iChIP libraries were sequenced using an Illumina NextSeq 500 sequencer. For 
M. leidyi, the total number of reads was 21 million for H3K4me2, 12 million for 
H3K4me3 and 10 million for input. For T. adhaerens, the read number totals were 
24 million for H3K4me2, 14 million for H3K4me3 and 11 million for input.

iChIP analysis and enhancer definition. iChIP reads were trimmed to 37 
nucleotides and then mapped into the corresponding reference genome using 
Bowtie version 1.1.1 (ref. 60) with the parameters -v 3 -m 1. Duplicate reads were 
removed using SAMtools version 1.1 (ref. 61). Mapped reads were extended to 
200 bp (iChIP libraries fragment size), and 1-bp-resolution coverage statistics over 
each of the genomes were computed.

To control for ChIP-sequencing coverage and variable ChIP-sequencing 
specificity, we transformed raw coverage values to quantile values. H3K4me3 and 
H3K4me2 peaks were defined as regions with coverage quantiles over 0.97 (in  
M. leidyi) or 0.94 (in T. adhaerens), merging peaks located at <​200 bp. To account 
for mappability and assembly problems (for example, repetitive regions), we 
defined ‘peaks’ using input data and excluded those regions from our H3K4me3/2 
peaks. In downstream analysis, iChIP coverage is indicated as –log2(1 – coverage 
quantile), in a way that, for example, a normalized value of 9 indicates that 
coverage is in the top 1–2–9 quantile (that is, the top 1/512th of the distribution).

H3K4me3 is associated with promoter elements, while H3K4me2 is associated 
with both promoters and enhancers55. We used this property to search for distal 
enhancer elements in M. leidyi and T. adhaerens, by asking for H3K4me2 peaks 
that are ≥​2 kb from any H3K4me3 or TSS (of an expressed gene; ≥​5 total  
UMIs detected).

Sequence motif analysis. We extracted promoter sequences using −​200 or +​
50 bp from annotated TSSs and associated sequences with metacells whenever 
their gene was at least twofold overexpressed in the module compared with the 
background. We then performed de novo motif enrichment analysis for the 
regulatory sequences associated with each gene list, using the HOMER tool 
findMotifsGenome.pl (with default parameters, searching for 25 motifs and with a 
constant fragment size of 250 bp)62. For each species, we grouped all the resulting 
de novo motifs and used the HOMER tool compareMotif.pl to filter the motifs 
(minimum P value <​ 1 ×​ 10–10; minimum number of hits in target sequences ≥​10) 
and then merge redundant motifs (>​0.8 similarity threshold). Additionally, in the 
case of M. leidyi, we searched for enriched motifs in all enhancers (1,157) versus 
the entire genome, using a HOMER fragment size of 600 bp.

For a comparison of de novo motifs with the database, we used data from 
Jolma et al.63,64, the HOCOMOCO database62,65, the JASPAR database, Drosophila 
DMMPMM database, the plant AthaMap database, and Saccharomyces motif 
collections from Harbinson et al. and MacIsaac et al. We computed similarities 
between motifs (Fig. 6 and Supplementary Fig. 7) using the motifSimilarity 
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function of the PWMEnrich R library, which computes the normalized sum of 
correlations between motif position frequency matrices.

As a result of the de novo motif finding, filtering and merging, we obtained 
a single set of motifs per species. We then analysed the over-representation of 
specific motifs in promoters associated with metacell-specific gene modules. 
For a short sequence element s[1..k] =​ s1,...,sk and a position weight matrix 
(PWM) wi[c], the standard local probability model is defined by multiplication: 
log(P(s)) =​ ∑ilog(wi[si]) and the binding energy for a larger sequence element can 
be approximated66 by E(s[1...n]) =​ log(∑ = −j n k1:( )P(s[j:(j +​ k)]). For each PWM, the 
0.98 quantiles of genome-wide binding energies in windows of 250 bp (same size as 
promoters) were determined. These quantile values were then used as thresholds 
to determine the motif occurrence for each PWM at each element. The enrichment 
level of each PWM–metacell pair was computed as the fold change between the 
frequency of occurrence of a motif in the metacell promoters and the frequency in 
the background gene set (all other genes detected in this study). Enrichments were 
assessed statistically using a hypergeometric test. We account for multiple testing 
by performing 100 random permutations of the promoter motif energy matrix, 
computing P values for each permutation and using the resulting distribution to 
derive FDR values on the empirical enrichments. An FDR threshold of 0.02 was 
used for the motif enrichment visualization. Additionally, only motifs with a fold-
change enrichment over 1.5 in at least one metacell, and a minimum foreground 
count of 5 (that is, at least 5 genes in the metacell gene set with the motif in their 
promoters) and background count of 100 were considered.

Finally, we performed a cross-validation analysis by dividing expressed genes 
into 5 blocks and, for each of them, running the whole de novo motif discovery 
pipeline with the other 80% of the genes (training set). Using the glmnet R package, 
we built a LASSO (least absolute shrinkage and selection operator) regularized 
linear model based on the promoter motif energies and gene expression values 
of the training set (80%). We then employed this model to predict the expression 
values of the gene test set (20%) based on the motif energies in their promoters. We 
did this for each of the five blocks, resulting in predicted expression values for all 
expressed genes in our dataset. Receiver operating characteristic curves and AUC 
values were computed using the pROC R package.

Gene functional annotation. We used BLASTp (with the parameters -evalue 
1 ×​ 10–5 and -max_target_seqs 1) to find the most similar, if any, human, fruit fly 
and yeast homologues (retrieved from UniProt) for each protein of the predicted 
A. queenslandica, M. leidyi and T. adhaerens predicted proteomes. Additionally, we 
predicted for each protein the Pfam domain composition using PfamScan67 with 
the default curated gathering threshold. Transcription factors were identified using 
univocal Pfam domains for each structural transcription factor family68. In the case 
of multiple transcription factor families (Homeobox, Fox, bHLH, bZIP, DM, Smad, 
Myb, NR, RFX, RHD, SRF, Ets, T-box and Sox), we used phylogenetic analyses for 
each family to classify them into specific subfamilies (together with the complete 
transcription factor sets of an additional ten animal species, including Homo sapiens 
and D. melanogaster for reference annotation). Briefly, sequences were aligned 
using MAFFT69, the resulting analysis were manually edited, ProtTest70 was used 
to define the best-fit aminoacidic substitution model in each case, and then 
phylogenies were computed using RAxML71 and PhyloBayes72, for maximum 
likelihood and Bayesian inference, respectively. We used a similar strategy to build 
a phylogeny of A. queenslandica aspzincins (Supplementary Fig. 2e), extending our 
search for aspzincins to other eukaryotic and bacterial species. To this end, we used 
the presence of the Aspzincin_M35 domain (PF14521; Pfam) to identify aspzincins 
in different species.

Phylogenetic distribution and gene-age estimation. We used the complete 
predicted proteomes of 39 species (Supplementary Table 6) at key phylogenetic 
positions to compute orthogroups, including an extensive set of 11 ctenophore 
species (Beroe abyssicola, Bolynopsis infundibulum, Coeloplana astericola, 
Coeloplana meteoris, Dryodora glandiformis, Euplokamis dunlapae, Mertensiidae 
species, Vallicula multiformis, Lampea pancerina, Pleurobrachia bachei and 
Mnemiopsis leyidi)4,12, 10 poriferan species (Clathrina coriacea, Grantia compressa, 
Leuconia nivea, Sycon ciliatum, Plakina jani, Oscarella carmela, Pleraplysilla 
spinifera, A. queenslandica, Eunapius carteri and Ephydatia muelleri)4,47, 
the placozoan T. adhaerens, 8 cnidarian and bilaterian species (H. sapiens, 
Branchiostoma floridae, D. melanogaster, Tribolium castaneum, Capitella teleta, 
Lottia gigantea, Acropora digitifera and Nematostella vectensis) and 8 non-metazoan 
eukaryotes (Salpingoca rosetta, Capsaspora owczarzaki, Creolimax fragrantissima, 
Saccharomyces cerevisiae, Spizellomyces punctatus, Dictyostelium discoideum, 
Arabidopsis thaliana and Naegleria gruberi). We computed reciprocal BLAST 
results between all complete proteomes, with a fixed database size and an e-value 
threshold of 1 ×​ 10–4. Based on these reciprocal BLAST results, orthogroups were 
computed using the orthoMCL algorithm73 with an inflation value (I parameter) 
of 1.3. We parsed these orthogroups using a parsimony criterion to generate an age 
estimation for each A. queenslandica, M. leidyi and T. adhaerens gene.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The analysis code is available on our group website at http://
compgenomics.weizmann.ac.il/tanay/?page_id=​99.

Data availability. All data was deposited in Gene Expression Omnibus with the 
accession number GSE111068. The MetaCell package, UMI tables and annotation 
files are available on our group website at http://compgenomics.weizmann.ac.il/
tanay/?page_id=​99.
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For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection NA

Data analysis Link to the code and usage instructions are provided, as well as detailed description of the algorithm (Appendix S1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data was deposited in GEO with the accession number GSE111068. The MetaCell package, UMI tables and annotation files are available on our group website: 
http://compgenomics.weizmann.ac.il/tanay/?page_id=99 
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Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sequencing depth and number of libraries were defined to allow support for the paper's main conclusions (there is no "sample size" in this 
paper).

Data exclusions No data were excluded from the analysis.

Replication NA

Randomization NA

Blinding NA

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used We employed antibodies against histone H3 and specific modifications of histone H3: 

anti-H3 antibody (Abcam, #ab1791) 
anti-H3K4me2 antibody (Abcam, #ab3236)  
anti-H3K4me3 antibody (Millipore, #07-473)  

Validation These antibodies have a wide species spectrum (paneukaryotic) and have been extensively used and validated in iChIP studies.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Placozoan (Trichoplax adhaerens) specimens were cultured in the lab.

Wild animals Sponge (Amphimedon queenslandica) specimens were collected from Heron Island Reef, Great Barrier Reef, Queensland, 
Australia. 
Ctenophore (Mnemiopsis leidyi) specimens originated from L. Friis-Møller, Kristineberg, Sweden. 

Field-collected samples Sponge and ctenophore specimens were mantained in filtered artificial sea water until further processing (dissociation for single-
cell analysis or for chromatin extraction).
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ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

GSE111068 

Files in database submission Mnemiopsis_genes.bed 
Mnemiopsis_genome_sequence.fasta 
Mnemiopsis_original_scaffolds_edges.bed 
Trichoplax_genes.bed 
Trichoplax_genome_sequence.fasta 
Trichoplax_original_scaffolds_edges.bed 
 
Mnemiopsis_H3K4me2_peaks.bed 
Mnemiopsis_H3K4me3_peaks.bed 
Trichoplax_H3K4me2_peaks.bed 
Trichoplax_H3K4me3_peaks.bed 
 
Mnemiopsis_input_all_RPM.bw 
Mnemiopsis_me2_all_RPM.bw 
Mnemiopsis_me3_all_RPM.bw 
Trichoplax_input_all_RPM.bw 
Trichoplax_me2_all_RPM.bw 
Trichoplax_me3_all_RPM.bw 
 
 
Mnemiopsis_iChIP1_input_R1.fastq.gz 
Mnemiopsis_iChIP1_input_R2.fastq.gz 
Mnemiopsis_iChIP1_K4me2_R1.fastq.gz 
Mnemiopsis_iChIP1_K4me2_R2.fastq.gz 
Mnemiopsis_iChIP1_K4me3_R1.fastq.gz 
Mnemiopsis_iChIP1_K4me3_R2.fastq.gz 
 
Mnemiopsis_iChIP2_input_R1.fastq.gz 
Mnemiopsis_iChIP2_input_R2.fastq.gz 
Mnemiopsis_iChIP2_K4me2_R1.fastq.gz 
Mnemiopsis_iChIP2_K4me2_R2.fastq.gz 
Mnemiopsis_iChIP2_K4me3_R1.fastq.gz 
Mnemiopsis_iChIP2_K4me3_R2.fastq.gz 
 
Trichoplax_iChIP1_input_R1.fastq.gz 
Trichoplax_iChIP1_input_R2.fastq.gz 
Trichoplax_iChIP1_K4me2_R1.fastq.gz 
Trichoplax_iChIP1_K4me2_R2.fastq.gz 
Trichoplax_iChIP1_K4me3_R1.fastq.gz 
Trichoplax_iChIP1_K4me3_R2.fastq.gz 
 
Trichoplax_iChIP2_input_R1.fastq.gz 
Trichoplax_iChIP2_input_R2.fastq.gz 
Trichoplax_iChIP2_K4me2_R1.fastq.gz 
Trichoplax_iChIP2_K4me2_R2.fastq.gz 
Trichoplax_iChIP2_K4me3_R1.fastq.gz 
Trichoplax_iChIP2_K4me3_R2.fastq.gz 

Genome browser session 
(e.g. UCSC)

NA

Methodology

Replicates Two replicates of iChIP experiments. Reads were pooled for downstream analysis.

Sequencing depth 12 cycles of library PCR. 37nt Paired-End Reads. For M.leidyi, the total number of reads was: 21M (H3K4me2), 12M 
(H3K4me3) and 10M (input). For T.adhaerens, the total number of reads was:  24M (H3K4me2), 14M (H3K4me3), and 11M 
(input).  
For T.adhaerens, % of single-mapping reads ranged 65-68%. For M.leidyi, % of single-mapping  reads ranged 40-42%.  

Antibodies anti-H3 antibody (Abcam, #ab1791) 
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Antibodies anti-H3K4me2 antibody (Abcam, #ab3236)  
anti-H3K4me3 antibody (Millipore, #07-473) 

Peak calling parameters We transformed raw coverage values to quantile values. H3K4me3 and H3K4me2 peaks were defined as regions with 
coverage quantiles over 0.97 (in M.leidyi) or 0.94 (in T.adhaerens), merging peaks located at <200bp. To account for 
mappability/assembly problems, we defined “peaks” using input data and excluded those regions from our H3K4me3/me2 
peaks. 

Data quality NA

Software Reads mapped using bowtie v1.1.1 with parameters -m1 -v3. Duplicated reads removed using SAMtools v1.1.
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